Project description:Three protein targets from SARS-CoV-2, the viral pathogen that causes COVID-19, are studied: the main protease, the 2'-O-RNA methyltransferase, and the nucleocapsid (N) protein. For the main protease, the nucleophilicity of the catalytic cysteine C145 is enabled by coupling to three histidine residues, H163 and H164 and catalytic dyad partner H41. These electrostatic couplings enable significant population of the deprotonated state of C145. For the RNA methyltransferase, the catalytic lysine K6968 that serves as a Brønsted base has significant population of its deprotonated state via strong coupling with K6844 and Y6845. For the main protease, Partial Order Optimum Likelihood (POOL) predicts two clusters of biochemically active residues; one includes the catalytic H41 and C145 and neighboring residues. The other surrounds a second pocket adjacent to the catalytic site and includes S1 residues F140, L141, H163, E166, and H172 and also S2 residue D187. This secondary recognition site could serve as an alternative target for the design of molecular probes. From in silico screening of library compounds, ligands with predicted affinity for the secondary site are reported. For the NSP16-NSP10 complex that comprises the RNA methyltransferase, three different sites are predicted. One is the catalytic core at the conserved K-D-K-E motif that includes catalytic residues D6928, K6968, and E7001 plus K6844. The second site surrounds the catalytic core and consists of Y6845, C6849, I6866, H6867, F6868, V6894, D6895, D6897, I6926, S6927, Y6930, and K6935. The third is located at the heterodimer interface. Ligands predicted to have high affinity for the first or second sites are reported. Three sites are also predicted for the nucleocapsid protein. This work uncovers key interactions that contribute to the function of the three viral proteins and also suggests alternative sites for ligand design.
Project description:Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, is a highly transmittable and pathogenic human coronavirus that first emerged in China in December 2019. The unprecedented outbreak of SARS-CoV-2 devastated human health within a short time leading to a global public health emergency. A detailed understanding of the viral proteins including their structural characteristics and virulence mechanism on human health is very crucial for developing vaccines and therapeutics. To date, over 1800 structures of non-structural, structural, and accessory proteins of SARS-CoV-2 are determined by cryo-electron microscopy, X-ray crystallography, and NMR spectroscopy. Designing therapeutics to target the viral proteins has several benefits since they could be highly specific against the virus while maintaining minimal detrimental effects on humans. However, for ongoing and future research on SARS-CoV-2, summarizing all the viral proteins and their detailed structural information is crucial. In this review, we compile comprehensive information on viral structural, non-structural, and accessory proteins structures with their binding and catalytic sites, different domain and motifs, and potential drug target sites to assist chemists, biologists, and clinicians finding necessary details for fundamental and therapeutic research.
Project description:The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent of the coronavirus disease of 2019 (COVID-19). Its genome encodes two open reading frames for two large proteins, PP1a and PP1ab. Within the two polypeptide stretches, there are two proteases that process the large proteins into 15 discrete proteins essential for the assembly of the virion during its replication. We describe herein the cloning of the genes for these discrete proteins optimized for expression in Escherichia coli, production of the proteins, and their purification to homogeneity. These included all but six: NSP6, which possesses eight transmembrane regions, and five that are small proteins/peptides (E, ORF3b, ORF6, ORF7b, and ORF10). These proteins are intended for experimental validation of small-molecule binders as molecular template hits. The proof of concept was established with the ADP-ribosylhydrolase (ARH) domain of NSP3 in discovery of small-molecule templates that could serve as the basis for further optimization. The hit molecules include one submicromolar and a few low-micromolar binders to the ARH domain. Availability of these proteins in soluble forms opens up the opportunity for discoveries of novel templates with the potential for anti-COVID-19 pharmaceuticals.
Project description:Coronavirus disease (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 is a global health emergency and no clinically approved vaccines or antiviral drugs available to date. Intensive research on SARS-CoV-2 is urgently warranted to understand its pathogenesis and virulence mechanisms and to discover target-based antiviral therapeutics. Among various research logics, current bioinformatics highlights novel testable hypotheses for systematic drug repositioning and designing against COVID-19. A total of 121 articles related to bioinformatics facets of this virus were collected from the PubMed Central. The content of each investigation was comprehensively reviewed, manually curated, and included herein. Interestingly, 109 COVID-19-related literature published in 2020 (January-June) were included in this review. The present article emphasizes novel resource development on its genome structure, evolution, therapeutic targets, drug designing, and drug repurposing strategies. Genome organization, the function of coding genes, origin, and evolution of SARS-CoV-2 is described in detail. Genomic insights into understanding the structure-function relationships of drug targets including spike, main protease, and RNA-dependent RNA polymerase of SARS-CoV-2 are discussed intensively. Several molecular docking and systems pharmacology approaches have been investigated some promising antiviral drugs against SARS-CoV-2 based on its genomic characteristics, pathogenesis mechanism, and host specificity. Perhaps, the present genomic insights of this virus will provide a lead to the researchers to design or repurpose of antiviral drugs soon and future directions to control the spread of COVID-19.
Project description:this study unveil the pivotal role of ACTN4 in SARS-CoV-2 infection, offering novel insights into the intricate interplay between the virus and host cells, and reveal two potential candidates for future anti SARS-CoV-2 drug development.
Project description:SARS-CoV-2, the etiologic agent of the COVID-19 pandemic, is a highly contagious positive-sense RNA virus. Its explosive community spread and the emergence of new mutant strains have created palpable anxiety even in vaccinated people. The lack of effective anticoronavirus therapeutics continues to be a major global health concern, especially due to the high evolution rate of SARS-CoV-2. The nucleocapsid protein (N protein) of SARS-CoV-2 is highly conserved and involved in diverse processes of the virus replication cycle. Despite its critical role in coronavirus replication, N protein remains an unexplored target for anticoronavirus drug discovery. Here, we demonstrate that a novel compound, K31, binds to the N protein of SARS-CoV-2 and noncompetitively inhibits its binding to the 5' terminus of the viral genomic RNA. K31 is well tolerated by SARS-CoV-2-permissive Caco2 cells. Our results show that K31 inhibited SARS-CoV-2 replication in Caco2 cells with a selective index of ~58. These observations suggest that SARS-CoV-2 N protein is a druggable target for anticoronavirus drug discovery. K31 holds promise for further development as an anticoronavirus therapeutic. IMPORTANCE The lack of potent antiviral drugs for SARS-CoV-2 is a serious global health concern, especially with the explosive spread of the COVID-19 pandemic worldwide and the constant emergence of new mutant strains with improved human-to-human transmission. Although an effective coronavirus vaccine appears promising, the lengthy vaccine development processes in general and the emergence of new mutant viral strains with a potential to evade the vaccine always remain a serious concern. The antiviral drugs targeted to the highly conserved targets of viral or host origin remain the most viable and timely approach, easily accessible to the general population, in combating any new viral illness. The majority of anticoronavirus drug development efforts have focused on spike protein, envelope protein, 3CLpro, and Mpro. Our results show that virus-encoded N protein is a novel therapeutic target for anticoronavirus drug discovery. Due to its high conservation, the anti-N protein inhibitors will likely have broad-spectrum anticoronavirus activity.
Project description:Hinge sites of proteins play a key role in mediating conformational mechanics. Among them, those involved in the most collective modes of motion, also called global hinges, are of particular interest, as they support cooperative rearrangements that are often functional. Yet, the utility of targeting global hinges for modulating function remains to be established. We present here a systematic study of a series of proteins resolved in drug-bound forms to examine the probabilistic occurrence of spatial overlaps between hinge sites and drug-binding pockets. Our analysis reveals a high propensity of drug binding to hinge sites compared to random. Notably, one-third of currently approved drugs are colocalized with hinge sites. These mechanosensitive sites are predictable by simple models such as the Gaussian Network Model. Their targeting thus emerges as a viable strategy for developing a new class of drugs that would exploit and modulate the target proteins' intrinsic dynamics, and potentially alleviate drug-resistance when used in combination with orthosteric or allosteric drugs.
Project description:Coronavirus disease 2019 (COVID-19) is a novel disease caused by the severe acute respiratory syndrome coronavirus (SARS-CoV)-2 virus that was first detected in December of 2019 in Wuhan, China, and has rapidly spread worldwide. The search for a suitable vaccine as well as effective therapeutics for the treatment of COVID-19 is underway. Drug repurposing screens provide a useful and effective solution for identifying potential therapeutics against SARS-CoV-2. For example, the experimental drug remdesivir, originally developed for Ebola virus infections, has been approved by the US Food and Drug Administration as an emergency use treatment of COVID-19. However, the efficacy and toxicity of this drug need further improvements. In this review, we discuss recent findings on the pathology of coronaviruses and the drug targets for the treatment of COVID-19. Both SARS-CoV-2-specific inhibitors and broad-spectrum anticoronavirus drugs against SARS-CoV, Middle East respiratory syndrome coronavirus, and SARS-CoV-2 will be valuable additions to the anti-SARS-CoV-2 armament. A multitarget treatment approach with synergistic drug combinations containing different mechanisms of action may be a practical therapeutic strategy for the treatment of severe COVID-19. SIGNIFICANCE STATEMENT: Understanding the biology and pathology of RNA viruses is critical to accomplish the challenging task of developing vaccines and therapeutics against SARS-CoV-2. This review highlights the anti-SARS-CoV-2 drug targets and therapeutic development strategies for COVID-19 treatment.
Project description:Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) autocatalytically releases itself out of the viral polyprotein to form a fully active mature dimer in a manner that is not fully understood. Here, we introduce several tools to help elucidate differences between cis (intramolecular) and trans (intermolecular) proteolytic processing and to evaluate inhibition of precursor Mpro. We found that many mutations at the P1 position of the N-terminal autoprocessing site do not block cis autoprocessing but do inhibit trans processing. Notably, substituting the WT glutamine at the P1 position with isoleucine retains Mpro in an unprocessed precursor form that can be purified and further studied. We also developed a cell-based reporter assay suitable for compound library screening and evaluation in HEK293T cells. This assay can detect both overall Mpro inhibition and the fraction of uncleaved precursor form of Mpro through separable fluorescent signals. We observed that inhibitory compounds preferentially block mature Mpro. Bofutrelvir and a novel compound designed in-house showed the lowest selectivity between precursor and mature Mpro, indicating that inhibition of both forms may be possible. Additionally, we observed positive modulation of precursor activity at low concentrations of inhibitors. Our findings help expand understanding of the SARS-CoV-2 viral life cycle and may facilitate development of strategies to target precursor form of Mpro for inhibition or premature activation of Mpro.