Unknown

Dataset Information

0

Active-Sensing Epidermal Stretchable Bioelectronic Patch for Noninvasive, Conformal, and Wireless Tendon Monitoring.


ABSTRACT: Sensors capable of monitoring dynamic mechanics of tendons throughout a body in real time could bring systematic information about a human body's physical condition, which is beneficial for avoiding muscle injury, checking hereditary muscle atrophy, and so on. However, the development of such sensors has been hindered by the requirement of superior portability, high resolution, and superb conformability. Here, we present a wearable and stretchable bioelectronic patch for detecting tendon activities. It is made up of a piezoelectric material, systematically optimized from architectures and mechanics, and exhibits a high resolution of 5.8 × 10-5 N with a linearity parameter of R 2 = 0.999. Additionally, a tendon real-time monitoring and healthcare system is established by integrating the patch with a micro controller unit (MCU), which is able to process collected data and deliver feedback for exercise evaluation. Specifically, through the patch on the ankle, we measured the maximum force on the Achilles tendon during jumping which is about 16312 N, which is much higher than that during normal walking (3208 N) and running (5909 N). This work not only provides a strategy for facile monitoring of the variation of the tendon throughout the body but also throws light on the profound comprehension of human activities.

SUBMITTER: Shu S 

PROVIDER: S-EPMC8244543 | biostudies-literature | 2021

REPOSITORIES: biostudies-literature

altmetric image

Publications

Active-Sensing Epidermal Stretchable Bioelectronic Patch for Noninvasive, Conformal, and Wireless Tendon Monitoring.

Shu Sheng S   An Jie J   Chen Pengfei P   Liu Di D   Wang Ziming Z   Li Chengyu C   Zhang Shuangzhe S   Liu Yuan Y   Luo Jianzhe J   Zu Lulu L   Tang Wei W   Wang Zhong Lin ZL  

Research (Washington, D.C.) 20210621


Sensors capable of monitoring dynamic mechanics of tendons throughout a body in real time could bring systematic information about a human body's physical condition, which is beneficial for avoiding muscle injury, checking hereditary muscle atrophy, and so on. However, the development of such sensors has been hindered by the requirement of superior portability, high resolution, and superb conformability. Here, we present a wearable and stretchable bioelectronic patch for detecting tendon activit  ...[more]

Similar Datasets

| S-EPMC5722470 | biostudies-literature
| S-EPMC7404159 | biostudies-literature
| S-EPMC10038347 | biostudies-literature
| S-EPMC10409863 | biostudies-literature
| S-EPMC9468213 | biostudies-literature
| S-EPMC7074652 | biostudies-literature
| S-EPMC10998577 | biostudies-literature
| S-EPMC10576757 | biostudies-literature
| S-EPMC7648760 | biostudies-literature
| S-EPMC8571508 | biostudies-literature