Unknown

Dataset Information

0

MiR-543 Inhibits the Migration and Epithelial-To-Mesenchymal Transition of TGF-β-Treated Endometrial Stromal Cells via the MAPK and Wnt/β-Catenin Signaling Pathways.


ABSTRACT: Intrauterine adhesion (IUA) is one of the most prevalent reproductive system diseases in females. MicroRNAs (miRNAs) are reported to be master regulators in a variety of diseases, including IUA, but the role of microRNA-543 (miR-543) in IUA remains to be elucidated. In this study, we observed that miR-543 was downregulated in transforming growth factor-beta (TGF-β)-treated endometrial stromal cells (ESCs). Functionally, we observed that miR-543 suppressed the migration, epithelial-to-mesenchymal transition (EMT), and inhibited expression of extracellular matrix (ECM) proteins in TGF-β-treated ESCs. Mechanistically, MAPK1 is targeted by miR-543 after prediction and screening. A luciferase reporter assay demonstrated that miR-543 complementarily binds with the 3' untranslated region of mitogen-activated protein kinase 1 (MAPK1), and western blot analysis indicated that miR-543 negatively regulates MAPK1 protein levels. In addition, results from rescue assays showed that miR-543 inhibits the migration and EMT of TGF-β-treated ESCs by targeting MAPK1. In addition, we observed that miR-543 inactivates the Wnt/β-catenin signaling pathway through inhibiting the phosphorylation of MAPK1 and β-catenin. Finally, we confirmed that miR-543 represses migration, EMT and inhibits levels of ECM proteins in TGF-β-treated ESCs by targeting the Wnt/β-catenin signaling pathway. Our results demonstrated that miR-543 suppresses migration and EMT of TGF-β-treated ESCs by targeting the MAPK and Wnt/β-catenin pathways.

SUBMITTER: Wang L 

PROVIDER: S-EPMC8262167 | biostudies-literature | 2021

REPOSITORIES: biostudies-literature

altmetric image

Publications

MiR-543 Inhibits the Migration and Epithelial-To-Mesenchymal Transition of TGF-β-Treated Endometrial Stromal Cells via the MAPK and Wnt/β-Catenin Signaling Pathways.

Wang Linlin L   Liu Dan D   Wei Jun J   Yuan Liwei L   Zhao Shiyun S   Huang Yani Y   Ma Jingwen J   Yang Zhijuan Z  

Pathology oncology research : POR 20210429


Intrauterine adhesion (IUA) is one of the most prevalent reproductive system diseases in females. MicroRNAs (miRNAs) are reported to be master regulators in a variety of diseases, including IUA, but the role of microRNA-543 (miR-543) in IUA remains to be elucidated. In this study, we observed that miR-543 was downregulated in transforming growth factor-beta (TGF-β)-treated endometrial stromal cells (ESCs). Functionally, we observed that miR-543 suppressed the migration, epithelial-to-mesenchymal  ...[more]

Similar Datasets

| S-EPMC7656702 | biostudies-literature
| S-EPMC7475493 | biostudies-literature
| S-EPMC8080580 | biostudies-literature
| S-EPMC6233532 | biostudies-literature
| S-EPMC5041938 | biostudies-literature
| S-EPMC4823869 | biostudies-literature
| S-EPMC6691374 | biostudies-literature
| S-EPMC3937350 | biostudies-literature
| S-EPMC9842938 | biostudies-literature
| S-EPMC10940096 | biostudies-literature