Project description:Defects in mitochondrial metabolism have been increasingly linked with age-onset protein-misfolding diseases such as Alzheimer's, Parkinson's, and Huntington's. In response to protein-folding stress, compartment-specific unfolded protein responses (UPRs) within the ER, mitochondria, and cytosol work in parallel to ensure cellular protein homeostasis. While perturbation of individual compartments can make other compartments more susceptible to protein stress, the cellular conditions that trigger cross-communication between the individual UPRs remain poorly understood. We have uncovered a conserved, robust mechanism linking mitochondrial protein homeostasis and the cytosolic folding environment through changes in lipid homeostasis. Metabolic restructuring caused by mitochondrial stress or small-molecule activators trigger changes in gene expression coordinated uniquely by both the mitochondrial and cytosolic UPRs, protecting the cell from disease-associated proteins. Our data suggest an intricate and unique system of communication between UPRs in response to metabolic changes that could unveil new targets for diseases of protein misfolding.
Project description:Defects in mitochondrial metabolism have been increasingly linked with age-onset protein misfolding diseases such as Alzheimerâs, Parkinsonâs, and Huntingtonâs. In response to protein folding stress, compartment-specific unfolded protein responses (UPRs) within the endoplasmic reticulum, mitochondria, and cytosol work in parallel to ensure cellular protein homeostasis. While perturbation of individual compartments can make other compartments more susceptible to protein stress, the cellular conditions that trigger cross-communication between the individual UPRs remain poorly understood. We have uncovered a conserved, robust mechanism linking mitochondrial protein homeostasis and the cytosolic folding environment through changes in lipid homeostasis. Metabolic restructuring caused by mitochondrial stress or small molecule activators trigger changes in gene expression coordinated uniquely by both the mitochondrial and cytosolic UPRs, protecting the cell from disease-associated proteins. Our data suggest an intricate and unique system of communication between UPRs in response to metabolic changes that could unveil new targets for diseases of protein misfolding. Because the induction of the MCSR due to hsp-6 RNAi required both hsf-1 and dve-1, key transcription factors required for the HSR and UPRmt, respectively, we asked which gene sets are coordinately regulated by both factors. We performed microarray analyses to determine which genes have their expression altered by hsp-6 RNAi and whether these genes are regulated either by hsf-1, dve-1 or both
Project description:Defects in mitochondrial metabolism have been increasingly linked with age-onset protein misfolding diseases such as Alzheimer’s, Parkinson’s, and Huntington’s. In response to protein folding stress, compartment-specific unfolded protein responses (UPRs) within the endoplasmic reticulum, mitochondria, and cytosol work in parallel to ensure cellular protein homeostasis. While perturbation of individual compartments can make other compartments more susceptible to protein stress, the cellular conditions that trigger cross-communication between the individual UPRs remain poorly understood. We have uncovered a conserved, robust mechanism linking mitochondrial protein homeostasis and the cytosolic folding environment through changes in lipid homeostasis. Metabolic restructuring caused by mitochondrial stress or small molecule activators trigger changes in gene expression coordinated uniquely by both the mitochondrial and cytosolic UPRs, protecting the cell from disease-associated proteins. Our data suggest an intricate and unique system of communication between UPRs in response to metabolic changes that could unveil new targets for diseases of protein misfolding.
Project description:In response to stress, cells attenuate global protein synthesis but permit efficient translation of mRNAs encoding heat-shock proteins (HSPs). Although decades have passed since the first description of the heat-shock response, how cells achieve translational control of HSP synthesis remains enigmatic. Here we report an unexpected role for mitochondrial ribosomal protein L18 (MRPL18) in the mammalian cytosolic stress response. MRPL18 bears a downstream CUG start codon and generates a cytosolic isoform in a stress-dependent manner. Cytosolic MRPL18 incorporates into the 80S ribosome and facilitates ribosome engagement on mRNAs selected for translation during stress. MRPL18 knockdown has minimal effects on mitochondrial function but substantially dampens cytosolic HSP expression at the level of translation. Our results uncover a hitherto-uncharacterized stress-adaptation mechanism in mammalian cells, which involves formation of a 'hybrid' ribosome responsible for translational regulation during the cytosolic stress response.
Project description:Mitochondria are established essential regulators of cellular function and metabolism. Mitochondria regulate redox homeostasis, maintain energy (ATP) production through oxidative phosphorylation, buffer calcium levels, and control cell death through apoptosis. In addition to these critical cell functions, recent evidence supports a signaling role for mitochondria. For example, studies over the past few years have established that peptides released from the mitochondria mediate stress responses such as the mitochondrial unfolded protein response (UPRMT) through signaling to the nucleus. Mitochondrial damage or danger associated molecular patterns (DAMPs) provide a link between mitochondria, inflammation and inflammatory disease processes. Additionally, a new class of peptides generated by the mitochondria affords protection against age-related diseases in mammals. In this short review, we highlight the role of mitochondrial signaling and regulation of cellular activities through the mitochondrial UPRMT that signals to the nucleus to affect homeostatic responses, DAMPs, and mitochondrial derived peptides.
Project description:Adenosine 5' triphosphate (ATP) is the energy currency of life, which is produced in mitochondria (~90%) and cytosol (less than 10%). Real-time effects of metabolic changes on cellular ATP dynamics remain indeterminate. Here we report the design and validation of a genetically encoded fluorescent ATP indicator that allows for real-time, simultaneous visualization of cytosolic and mitochondrial ATP in cultured cells. This dual-ATP indicator, called smacATPi (simultaneous mitochondrial and cytosolic ATP indicator), combines previously described individual cytosolic and mitochondrial ATP indicators. The use of smacATPi can help answer biological questions regarding ATP contents and dynamics in living cells. As expected, 2-deoxyglucose (2-DG, a glycolytic inhibitor) led to substantially decreased cytosolic ATP, and oligomycin (a complex V inhibitor) markedly decreased mitochondrial ATP in cultured HEK293T cells transfected with smacATPi. With the use of smacATPi, we can also observe that 2-DG treatment modestly attenuates mitochondrial ATP and oligomycin reduces cytosolic ATP, indicating the subsequent changes of compartmental ATP. To evaluate the role of ATP/ADP carrier (AAC) in ATP trafficking, we treated HEK293T cells with an AAC inhibitor, Atractyloside (ATR). ATR treatment attenuated cytosolic and mitochondrial ATP in normoxia, suggesting AAC inhibition reduces ADP import from the cytosol to mitochondria and ATP export from mitochondria to cytosol. In HEK293T cells subjected to hypoxia, ATR treatment increased mitochondrial ATP along with decreased cytosolic ATP, implicating that ACC inhibition during hypoxia sustains mitochondrial ATP but may not inhibit the reversed ATP import from the cytosol. Furthermore, both mitochondrial and cytosolic signals decrease when ATR is given in conjunction with 2-DG in hypoxia. Thus, real-time visualization of spatiotemporal ATP dynamics using smacATPi provides novel insights into how cytosolic and mitochondrial ATP signals respond to metabolic changes, providing a better understanding of cellular metabolism in health and disease.
Project description:Preeclampsia (PE) is a pregnancy-specific syndrome, characterized in general by hypertension with proteinuria or other systemic disturbances. PE is the major cause of maternal and fetal morbidity and mortality worldwide. However, the etiology of PE still remains unclear. Our study involved 38 patients: 14 with uncomplicated pregnancy; 13 with early-onset PE (eoPE); and 11 with late-onset PE (loPE). We characterized the immunophenotype of cells isolated from the placenta and all biopsy samples were stained positive for Cytokeratin 7, SOX2, Nestin, Vimentin, and CD44. We obtained a significant increase in OPA1 mRNA and protein expression in the eoPE placentas. Moreover, TFAM expression was down-regulated in comparison to the control (p < 0.01). Mitochondrial DNA copy number in eoPE placentas was significantly higher than in samples from normal pregnancies. We observed an increase of maximum coupled state 3 respiration rate in mitochondria isolated from the placenta in the presence of complex I substrates in the eoPE group and an increase of P/O ratio, citrate synthase activity and decrease of Ca(2+)-induced depolarization rate in both PE groups. Our results suggest an essential role of mitochondrial activity changes in an adaptive response to the development of PE.
Project description:Cells trigger the assembly of stress granules (SGs) under various stress conditions. Among the many proteins recruited to SGs are RNA-binding proteins and transcription regulators. Here, we report the translocation of human (h)Cdc73, a component of the PAF1 transcription complex, to cytosolic SGs in response to arsenic stress. The hCdc73 protein possesses a long intrinsically disordered region (IDR) from amino acids 256-416, the presence of which is required for the translocation of hCdc73 to cytosolic SGs. The purified hCdc73 IDR formed droplets in vitro, and the light-activated assembly of hCdc73-IDR-mCherry-CRY2 was verified. For translocation of hCdc73 to SGs, physical interactions with SG carrier proteins, such as FMR1, are also needed. Previously, we reported that the cytosolic hCdc73-eEF1Bγ complex controls the stability of p53 mRNA. Under arsenic stress, selective sequestration of cytosolic hCdc73, but not eEF1Bγ (EEF1G) or p53 (TP53) mRNA, was detected. As a result, a transient increase in p53 mRNA at the post-transcriptional level was observed. In conclusion, we propose that the availability of mRNAs for stress-responsive genes can be controlled by restraining their negative regulators within SGs.
Project description:Purpose: Muscle wasting (or atrophy) occurs in primary neuromuscular diseases and during aging, with sarcopenia affecting 35.4% and 75.5% of women and man over 60 years of age. Mitochondrial dysfunction is proposed to contribute to muscle wasting. Here, we show that chronic adaptation to mitochondrial Precursor Over-accumulation Stress (mPOS) causes muscle wasting. mPOS is a newly discovered cell stress mechanism caused by the saturation or damage of the mitochondrial protein import machinery, which consequently leads to the toxic accumulation of precursor proteins in the cytosol. Methods: We generated transgenic mice with a two-fold increase of Ant1, an adenine nucleotide translocase involved in ATP/ADP exchange on the inner mitochondrial membrane (IMM). We found that these animals progressively lose muscle mass. At two years of age, the skeletal muscle becomes barely quantifiable, without affecting the overall lifespan. We then performed whole-transcriptome RNA-sequencing on skeletal muscle samples of male and female mice at 6 months of age. Results: After alignment and quantification, we show that the ANT1-transgenic muscles have a drastically remodeled transcriptome that represses protein synthesis, and stimulates proteasomal function, autophagy, lysosomal amplification and Gadd45a-signaling. These four processes are all known to promote muscle wasting. Conclusions: These results suggest that chronic proteostatic adaptation to mPOS is a robust mechanism of muscle wasting, and it leads to or depends in part on a robust set of transcriptional adaptations. This finding may help the understanding of how mitochondria contribute to muscle wasting during aging. It may also have implications for diseases that are associated with ANT1 overexpression.
Project description:Dysfunctions of the mitochondria and the ubiquitin-proteasome system, as well as generation of reactive oxygen species (ROS), are linked to many aging-related neurodegenerative disorders. However, the order of these events remains unclear. Here, we show that the initial impairment occurs in mitochondria under proteasome inhibition. Fluorescent redox probe measurements revealed that proteasome inhibition led to mitochondrial oxidation followed by cytosolic oxidation, which could be prevented by a mitochondrial-targeted antioxidant or antioxidative enzyme. These observations demonstrated that proteasome dysfunction causes damage to mitochondria, leading them to increase their ROS production and resulting in cytosolic oxidation. Moreover, several antioxidants found in foods prevented intracellular oxidation and improved cell survival by maintaining mitochondrial membrane potential and reducing mitochondrial ROS generation. However, these antioxidant treatments did not decrease the accumulation of protein aggregates caused by inhibition of the proteasome. These results suggested that antioxidative protection of mitochondria maintains cellular integrity, providing novel insights into the mechanisms of cell death caused by proteasome dysfunction.