Acute apnea and white blood cell count: A biphasic response formal comment on 'Hematologic changes after short term hypoxia in non-elite apnea divers under voluntary dry apnea conditions'.
Acute apnea and white blood cell count: A biphasic response formal comment on 'Hematologic changes after short term hypoxia in non-elite apnea divers under voluntary dry apnea conditions'.
Project description:PurposeThis study investigated the acute changes in full spectrum differential blood cell count including reticulocytes and immature reticulocytes after a voluntary maximal dry apnea in non-elite divers. Aim of the present study is to obtain information on important regulatory compensation mechanisms and to provide insights into apneic regulatory processes.MethodsTen apnea divers performed a voluntary dry mean apnea time of 317 sec [SD ±111 sec]. Differential blood cell count including reticulocytes was measured before and immediately after a single maximal breath-hold. To evaluate kinetics, blood samples were also taken after 30 min and 4 h. Value distributions are presented with dot plots. P-values were calculated using a mixed linear model for time dependency. Four difference values were compared to baseline values with Dunnett's procedure.ResultsSignificant changes were found in red blood cell parameters for erythrocytes, red cell distribution width, hematocrit, hemoglobin, MCV, reticulocytes and immature reticulocytes, and in white blood cell parameters for leucocytes, lymphocytes, immature granulocytes, monocytes, basophile granulocytes, neutrophil granulocytes and eosinophil granulocytes and for thrombocytes.ConclusionAdaptive mechanisms regarding cell counts in elite apnea divers are not readily transferable to non-elite recreational sportspersons. Divers and physicians should be aware of the limited adaptive performance of humans in the case of extended apnea.
Project description:Introduction: The cardiac electrical conduction system is very sensitive to hypoglycemia and hypoxia, and the consequence may be brady-arrythmias. Weddell seals endure brady-arrythmias during their dives when desaturating to 3.2 kPa and elite breath-hold-divers (BHD), who share metabolic and cardiovascular adaptions including bradycardia with diving mammals, endure similar desaturation during maximum apnea. We hypothesized that hypoxia causes brady-arrythmias during maximum apnea in elite BHD. Hence, this study aimed to define the arterial blood glucose (Glu), peripheral saturation (SAT), heart rhythm (HR), and mean arterial blood pressure (MAP) of elite BHD during maximum apneas. Methods: HR was monitored with Direct-Current-Pads/ECG-lead-II and MAP and Glu from a radial arterial-catheter in nine BHD performing an immersed and head-down maximal static pool apnea after three warm-up apneas. SAT was monitored with a sensor on the neck of the subjects. On a separate day, a 12-lead-ECG-monitored maximum static apnea was repeated dry (n = 6). Results: During pool apnea of maximum duration (385 ± 70 s), SAT decreased from 99.6 ± 0.5 to 58.5 ± 5.5% (∼PaO2 4.8 ± 1.5 kPa, P < 0.001), while Glu increased from 5.8 ± 0.2 to 6.2 ± 0.2 mmol/l (P = 0.009). MAP increased from 103 ± 4 to 155 ± 6 mm Hg (P < 0.005). HR decreased to 46 ± 10 from 86 ± 14 beats/minute (P < 0.001). HR and MAP were unchanged after 3-4 min of apnea. During dry apnea (378 ± 31 s), HR decreased from 55 ± 4 to 40 ± 3 beats/minute (P = 0.031). Atrioventricular dissociation and junctional rhythm were observed both during pool and dry apneas. Conclusion: Our findings contrast with previous studies concluding that Glu decreases during apnea diving. We conclude during maximum apnea in elite BHD that (1) the diving reflex is maximized after 3-4 min, (2) increasing Glu may indicate lactate metabolism in accordance with our previous results, and (3) extreme hypoxia rather than hypoglycemia causes brady-arrythmias in elite BHD similar to diving mammals.
Project description:BACKGROUND:Prolonged breath holding results in hypoxemia and hypercapnia. Compensatory mechanisms help maintain adequate oxygen supply to hypoxia sensitive organs, but burden the cardiovascular system. The aim was to investigate human compensatory mechanisms and their effects on the cardiovascular system with regard to cardiac function and morphology, blood flow redistribution, serum biomarkers of the adrenergic system and myocardial injury markers following prolonged apnoea. METHODS:Seventeen elite apnoea divers performed maximal breath-hold during cardiovascular magnetic resonance imaging (CMR). Two breath-hold sessions were performed to assess (1) cardiac function, myocardial tissue properties and (2) blood flow. In between CMR sessions, a head MRI was performed for the assessment of signs of silent brain ischemia. Urine and blood samples were analysed prior to and up to 4 h after the first breath-hold. RESULTS:Mean breath-hold time was 297 ± 52 s. Left ventricular (LV) end-systolic, end-diastolic, and stroke volume increased significantly (p < 0.05). Peripheral oxygen saturation, LV ejection fraction, LV fractional shortening, and heart rate decreased significantly (p < 0.05). Blood distribution was diverted to cerebral regions with no significant changes in the descending aorta. Catecholamine levels, high-sensitivity cardiac troponin, and NT-pro-BNP levels increased significantly, but did not reach pathological levels. CONCLUSION:Compensatory effects of prolonged apnoea substantially burden the cardiovascular system. CMR tissue characterisation did not reveal acute myocardial injury, indicating that the resulting cardiovascular stress does not exceed compensatory physiological limits in healthy subjects. However, these compensatory mechanisms could overly tax those limits in subjects with pre-existing cardiac disease. For divers interested in competetive apnoea diving, a comprehensive medical exam with a special focus on the cardiovascular system may be warranted. TRIAL REGISTRATION:This prospective single-centre study was approved by the institutional ethics committee review board. It was retrospectively registered under ClinicalTrials.gov (Trial registration: NCT02280226 . Registered 29 October 2014).
Project description:IntroductionElite breath-hold divers (BHD) possess several oxygen conserving adaptations to endure long dives similar to diving mammals. During dives, Bottlenose Dolphins may increase the alveolar ventilation (VA) to perfusion (Q) ratio to increase alveolar oxygen delivery. We hypothesized that BHD possess similar adaptive mechanisms during apnea.Methods and resultsPulmonary blood volume (PBV) was determined by echocardiography, 15O-H2O PET/CT, and cardiac MRi, (n = 6) during and after maximum apneas. Pulmonary function was determined by body box spirometry and compared to matched controls. After 2 min of apnea, the PBV determined by echocardiography and 15O-H2O-PET/CT decreased by 26% and 41%, respectively. After 4 min of apnea, the PBV assessed by echocardiography and cardiac MRi decreased by 48% and 67%, respectively (n = 6). Fractional saturation (F)O2Hb determined by arterial blood-gas-analyses collected after warm-up and a 5-minute pool-apnea (n = 9) decreased by 43%. Compared to matched controls (n = 8), spirometry revealed a higher total and alveolar-lung-capacity in BHD (n = 9), but a lower diffusion-constant.ConclusionOur results contrast with previous studies, that demonstrated similar lung gas transfer in BHD and matched controls. We conclude that elite BHD 1) have a lower diffusion constant than matched controls, and 2) gradually decrease PBV during apnea and in turn increase VA/Q to increase alveolar oxygen delivery during maximum apnea. We suggest that BHD possess pulmonary adaptations similar to diving mammals to tolerate decreasing tissue oxygenation.New and noteworthyThis manuscript addresses novel knowledge on tolerance to hypoxia during diving, which is shared by elite breath-hold divers and adult diving mammals: Our study indicates that elite breath-hold divers gradually decrease pulmonary blood volume and in turn increase VA/Q, to increase alveolar oxygen delivery during maximum apnea to tolerate decreasing oxygen levels similar to the Bottlenose Dolphin.
Project description:ContextThe Olympic sport of diving involves the competitive disciplines of 3 m springboard and 10 m platform. Although it is generally accepted that lumbar spine injuries are common in diving athletes, the existing literature of health problems in diving athletes remains scarce.ObjectiveTo identify the incidence, prevalence, and type of health problems that occur in competitive diving athletes.Data sourcesMedline, EMBASE, SportsDiscus, PsycINFO, and Google Scholar.Study selectionStudies written in English investigating elite or pre-elite competitive diving (springboard, platform) injuries and/or illnesses were eligible. Two independent reviewers screened for inclusion by title, abstract, and full text in accordance with the eligibility criteria.Study designSystematic review.Level of evidenceLevel 4.Data extractionData extraction was completed by 1 author using a structured form. A second author then independently reviewed and verified the extracted data, any discrepancies were resolved through consensus.ResultsThe search identified 2554 potential articles, with 28 studies meeting eligibility criteria. The surveillance setting of most studies was restricted to competition-based events, with the reported injury incidence proportion ranging from 2.1% to 22.2%. The reported injury incidence rate ranged from 1.9 to 15.5 per 1000 athlete-exposures. Injuries to the shoulder, lower back/lumbar spine, trunk, and wrist/hand were reported most frequently. The prevalence of low back pain was reported as high as 89% (lifetime), 43.1% (period), and 37.3% (point). The illness incidence proportion ranged from 0.0% to 22.2%, with respiratory and gastrointestinal illness reported most frequently.ConclusionUp to 1 in 5 diving athletes sustain an injury and/or illness during periods of competition. A reporting bias was observed, with most cohort studies limiting surveillance to short competition-based periods only. This limits the current understanding of the health problems experienced by diving athletes to competition periods only and requires expansion to whole-of-year surveillance.
Project description:It is unknown whether individuals with monoclonal B-cell lymphocytosis (MBL) are at risk for adverse outcomes associated with chronic lymphocytic leukemia (CLL), such as the risk of non-hematologic cancer. We identified all locally residing individuals diagnosed with high-count MBL at Mayo Clinic between 1999 and 2009 and compared their rates of non-hematologic cancer with that of patients with CLL and two control cohorts: general medicine patients and patients who underwent clinical evaluation with flow cytometry but who had no hematologic malignancy. After excluding individuals with prior cancers, there were 107 high-count MBL cases, 132 CLL cases, 589 clinic controls and 482 flow cytometry controls. With 4.6 years median follow-up, 14 (13%) individuals with high-count MBL, 21 (4%) clinic controls (comparison MBL P<0.0001), 18 (4%) flow controls (comparison MBL P=0.0001) and 16 (12%) CLL patients (comparison MBL P=0.82) developed non-hematologic cancer. On multivariable Cox regression analysis, individuals with high-count MBL had higher risk of non-hematologic cancer compared with flow controls (hazard ratio (HR)=2.36; P=0.04) and borderline higher risk compared with clinic controls (HR=2.00; P=0.07). Patients with high-count MBL appear to be at increased risk for non-hematologic cancer, further reinforcing that high-count MBL has a distinct clinical phenotype despite low risk of progression to CLL.
Project description:Wheelchair basketball coaches and researchers have typically relied on box score data and the Comprehensive Basketball Grading System to inform practice, however, these data do not acknowledge how the dynamic perspectives of teams change, vary and adapt during possessions in relation to the outcome of a game. Therefore, this study aimed to identify the key dynamic variables associated with team success in elite men's wheelchair basketball and explore the impact of each key dynamic variable upon the outcome of performance through the use of binary logistic regression modeling. The valid and reliable template developed Francis et al. (2019) was used to analyze video footage in SportsCode from 31 games at the men's 2015 European Wheelchair Basketball Championships. The 31 games resulted in 6,126 rows of data which were exported and converted into a CSV file, analyzed using R (R Core Team, 2015) and subjected to a data modeling process. Chi-square analyses identified significant (p < 0.05) relationships between Game Outcome and 19 Categorical Predictor Variables. Automated stepwise binary regression model building was completed using 70% of the data (4,282 possessions) and produced a model that included 12 Categorical Predictor Variables. The accuracy of the developed model was deemed to be acceptable at accurately predicting the remaining 30% of the data (1,844 possessions) and produced an area under the receiver operating characteristic curve value of 0.759. The model identified the odds of winning are more than double when the team in possession are in a state of winning at the start of the possession are increased five-fold when the offensive team do not use a 1.0 or 1.5 classified player, but are increased six-fold when the offensive team use three or more 3.0 or 3.5 players. The final model can be used by coaches, players and support staff to devise training and game strategies that involve selecting the most appropriate offensive and defensive approaches when performing ball possessions to enhance the likelihood of winning in elite men's wheelchair basketball.