Project description:Identifying the genetic changes driving adaptive variation in natural populations is key to understanding the origins of biodiversity. The mosaic of mimetic wing patterns in Heliconius butterflies makes an excellent system for exploring adaptive variation using next-generation sequencing. In this study, we use a combination of techniques to annotate the genomic interval modulating red color pattern variation, identify a narrow region responsible for adaptive divergence and convergence in Heliconius wing color patterns, and explore the evolutionary history of these adaptive alleles. We use whole genome resequencing from four hybrid zones between divergent color pattern races of Heliconius erato and two hybrid zones of the co-mimic Heliconius melpomene to examine genetic variation across 2.2 Mb of a partial reference sequence. In the intergenic region near optix, the gene previously shown to be responsible for the complex red pattern variation in Heliconius, population genetic analyses identify a shared 65-kb region of divergence that includes several sites perfectly associated with phenotype within each species. This region likely contains multiple cis-regulatory elements that control discrete expression domains of optix. The parallel signatures of genetic differentiation in H. erato and H. melpomene support a shared genetic architecture between the two distantly related co-mimics; however, phylogenetic analysis suggests mimetic patterns in each species evolved independently. Using a combination of next-generation sequencing analyses, we have refined our understanding of the genetic architecture of wing pattern variation in Heliconius and gained important insights into the evolution of novel adaptive phenotypes in natural populations.
Project description:Marine mammals provide a valuable model for studying the molecular basis of convergent evolution during secondary aquatic adaptation. Using multi-omics data and functional experiments, including CRISPR-Cas9 mouse models and luciferase reporter assays, this study explored the molecular mechanisms driving this transition across coding regions, regulatory elements, and genomic architecture. Convergent amino acid substitutions in APPL1 P378L and NEIL1 E71G were found to promote lipid accumulation and suppress cancer cell proliferation, likely contributing to the evolution of extensive blubber layers and cancer resistance. Convergently evolved conserved non-exonic elements (CNEs) and lineage-specific regulatory variations were shown to influence the activity of nearby genes (e.g., NKX3-2, SOX9, HAND2), shaping cetacean limb phenotypes. Additionally, convergent shifts in topologically associating domains (TADs) across cetaceans and pinnipeds were implicated in the regulation of ASXL3 and FAM43B expression, playing a role in the formation of thickened blubber layers and mitigating cancer susceptibility. Structural variations within conserved TADs were associated with the expression of neuronal genes, including NUP153 and ID4, potentially driving cognitive and social adaptations. These findings provide novel insights into the molecular foundations of the convergent evolution of secondary aquatic adaptations in mammals.
Project description:(1) Background: Charcot-Marie-Tooth disease (CMT) is the most frequent form of inherited chronic motor and sensory polyneuropathy. Over 100 CMT causative genes have been identified. Previous reports found PMP22, GJB1, MPZ, and MFN2 as the most frequently involved genes. Other genes, such as BSCL2, MORC2, HINT1, LITAF, GARS, and autosomal dominant GDAP1 are responsible for only a minority of CMT cases. (2) Methods: we present here our records of CMT patients harboring a mutation in one of these rare genes (BSCL2, MORC2, HINT1, LITAF, GARS, autosomal dominant GDAP1). We studied 17 patients from 8 unrelated families. All subjects underwent neurologic evaluation and genetic testing by next-generation sequencing on an Ion Torrent PGM (Thermo Fischer) with a 44-gene custom panel. (3) Results: the following variants were found: BSCL2 c.263A > G p.Asn88Ser (eight subjects), MORC2 c.1503A > T p.Gln501His (one subject), HINT1 c.110G > C p.Arg37Pro (one subject), LITAF c.404C > G p.Pro135Arg (two subjects), GARS c.1660G > A p.Asp554Asn (three subjects), GDAP1 c.374G > A p.Arg125Gln (two subjects). (4) Expanding the spectrum of CMT phenotypes is of high relevance, especially for less common variants that have a higher risk of remaining undiagnosed. The necessity of reaching a genetic definition for most patients is great, potentially making them eligible for future experimentations.
Project description:Biodiversity refugia formed by unique features of the Mediterranean arid landscape, such as the dramatic ecological contrast of "Evolution Canyon," provide a natural laboratory in which local adaptations to divergent microclimate conditions can be investigated. Significant insights have been provided by studies of Drosophila melanogaster diversifying along the thermal gradient in Evolution Canyon, but a comparative framework to survey adaptive convergence across sister species at the site has been lacking. To fill this void, we present an analysis of genomic polymorphism and evolutionary divergence of Drosophila simulans, a close relative of Drosophila melanogaster with which it co-occurs on both slopes of the canyon. Our results show even deeper interslope divergence in D. simulans than in D. melanogaster, with extensive signatures of selective sweeps present in flies from both slopes but enhanced in the population from the hotter and drier south-facing slope. Interslope divergence was enriched for genes related to electrochemical balance and transmembrane transport, likely in response to increased selection for dehydration resistance on the hotter slope. Both species shared genomic regions that underwent major selective sweeps, but the overall level of adaptive convergence was low, demonstrating no shortage of alternative genomic solutions to cope with the challenges of the microclimate contrast. Mobile elements were a major source of genetic polymorphism and divergence, affecting all parts of the genome, including coding sequences of mating behavior-related genes.
Project description:Received wisdom in the field of fungal biology holds that the process of editing a genome by transformation and homologous recombination is inherently mutagenic. However, that belief is based only on circumstantial evidence. We provide the first direct measurement of the effects of transformation on the genome by sequencing the genomes of 29 transformants and 30 untransformed controls to high coverage. Contrary to the received wisdom, our results show that transformation of DNA flanked by long targeting sequences, followed by homologous recombination and selection on a drug marker, is extremely safe. Gene deletion may select for a few mutations that occur after transformation, but even then we found fewer than two point mutations per gene deletion strain. We also tested these strains for changes in gene expression and found only a few genes that were consistently differentially expressed between wild types and strains with a drug resistance marker inserted. As part of this process, we provide the first published genome sequence of the commonly used laboratory strain Cryptococcus neoformans var. grubii strain KN99.
Project description:For the first time, we describe the whole genome of a yellow-pigmented, capsule-producing, pathogenic, and colistin-resistant Chryseobacterium gallinarum strain MGC42 isolated from a patient with urinary tract infection in India. VITEK 2 automated system initially identified this isolate as C. indologenes. However, 16S rRNA gene sequencing revealed that MGC42 shared 99.67% sequence identity with C. gallinarum-type strain DSM 27622. The draft genome of the strain MGC42 was 4,455,926 bp long with 37.08% Guanine-Cytosine (GC) content and was devoid of any plasmid. Antibiotic resistance, virulence, and toxin genes were predicted by implementing a machine learning classifier. Potential homologs of 340 virulence genes including hemolysin secretion protein D, metalloprotease, catalase peroxidases and autotransporter adhesins, type VI secretion system (T6SS) spike proteins, and 27 toxin factors including a novel toxin domain Ntox23 were identified in the genome. Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologs of 110 transporter proteins were predicted that were in agreement with moderate efflux activity. Twelve antibiotic resistance genes including two potentially novel putative β-lactamase genes sharing low similarity with known β-lactamase genes were also identified in the genome of this strain. The strain MGC42 was also resistant to several classes of antibiotics along with carbapenems and polymyxin. We also identified mutations in the orthologs of pmrB (M384T) and lpxD (I66V) that might be responsible for colistin resistance. The MGC42 strain shared 683 core genes with other environmental and clinical strains of Chryseobacterium species. Our findings suggest that the strain MGC42 is a multidrug-resistant, virulent pathogen and recommend 16S rRNA gene sequencing to identify clinical specimens of Chryseobacterium species.
Project description:Selective forces in the environment drive bacterial adaptation to novel niches, choosing the fitter variants in the population. However, in dynamic and changing environments, the evolutionary processes controlling bacterial adaptation are difficult to monitor. Here, we follow 9 people with cystic fibrosis chronically infected with Pseudomonas aeruginosa, as a proxy for bacterial adaptation. We identify and describe the bacterial changes and evolution occurring between 15 and 35 yr of within-host evolution. We combine whole-genome sequencing, RNA sequencing, and metabolomics and compare the evolutionary trajectories directed by the adaptation of 4 different P. aeruginosa lineages to the lung. Our data suggest divergent evolution at the genomic level for most of the genes, with signs of convergent evolution with respect to the acquisition of mutations in regulatory genes, which drive the transcriptional and metabolomic program at late time of evolution. Metabolomics further confirmed convergent adaptive phenotypic evolution as documented by the reduction of the quorum-sensing molecules acyl-homoserine lactone, phenazines, and rhamnolipids (except for quinolones). The modulation of the quorum-sensing repertoire suggests that similar selective forces characterize at late times of evolution independent of the patient. Collectively, our data suggest that similar environments and similar P. aeruginosa populations in the patients at prolonged time of infection are associated with an overall reduction of virulence-associated features and phenotypic convergence.
Project description:Convergent evolution occurs when the same trait arises independently in multiple lineages. In most cases of phenotypic convergence such transitions are adaptive, so finding the underlying molecular causes of convergence can provide insight into the process of adaptation. Convergent evolution at the genomic level also lends itself to study by comparative methods, although molecular convergence can also occur by chance, adding noise to this process. Parker et al. studied convergence across the genomes of several mammals, including echolocating bats and dolphins (Parker J, Tsagkogeorga G, Cotton JA, Liu Y, Provero P, Stupka E, Rossiter SJ. 2013. Genome-wide signatures of convergent evolution in echolocating mammals. Nature 502:228-231). On the basis of a null distribution of site-specific likelihood support (SSLS) generated using simulated topologies, they concluded that there was evidence for genome-wide adaptive convergence between echolocating taxa. Here, we demonstrate that methods based on SSLS do not adequately measure convergence, and reiterate the use of an empirical null model that directly compares convergent substitutions between all pairs of species. We find that when the proper comparisons are made there is no surprising excess of convergence between echolocating mammals, even in sensory genes.