Unknown

Dataset Information

0

The active repertoire of Escherichia coli peptidoglycan amidases varies with physiochemical environment.


ABSTRACT: Nearly all bacteria are encased in peptidoglycan, an extracytoplasmic matrix of polysaccharide strands crosslinked through short peptide stems. In the Gram-negative model organism Escherichia coli, more than 40 synthases and autolysins coordinate the growth and division of the peptidoglycan sacculus in the periplasm. The precise contribution of many of these enzymes to peptidoglycan metabolism remains unclear due to significant apparent redundancy, particularly among the autolysins. E. coli produces three major LytC-type-N-acetylmuramoyl-L-alanine amidases, which share a role in separating the newly formed daughter cells during cytokinesis. Here, we reveal two of the three amidases that exhibit growth medium-dependent changes in activity. Specifically, we report acidic growth conditions stimulate AmiB-and to a lesser extent, AmiC-amidase activity. Combining genetic, biochemical, and computational analyses, we demonstrate that low pH-dependent stimulation of AmiB is mediated through the periplasmic amidase activators NlpD, EnvC, and ActS (formerly known as YgeR). Although NlpD and EnvC promote amidase activity across pH environments, ActS preferentially stimulates AmiB activity in acidic conditions. Altogether, our findings support partially overlapping roles for E. coli amidases and their regulators in cell separation and illuminate the physiochemical environment as an important mediator of cell wall enzyme activity.

SUBMITTER: Mueller EA 

PROVIDER: S-EPMC8295211 | biostudies-literature | 2021 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

The active repertoire of Escherichia coli peptidoglycan amidases varies with physiochemical environment.

Mueller Elizabeth A EA   Iken Abbygail G AG   Ali Öztürk Mehmet M   Winkle Matthias M   Schmitz Mirko M   Vollmer Waldemar W   Di Ventura Barbara B   Levin Petra Anne PA  

Molecular microbiology 20210403 1


Nearly all bacteria are encased in peptidoglycan, an extracytoplasmic matrix of polysaccharide strands crosslinked through short peptide stems. In the Gram-negative model organism Escherichia coli, more than 40 synthases and autolysins coordinate the growth and division of the peptidoglycan sacculus in the periplasm. The precise contribution of many of these enzymes to peptidoglycan metabolism remains unclear due to significant apparent redundancy, particularly among the autolysins. E. coli prod  ...[more]

Similar Datasets

| S-EPMC8360153 | biostudies-literature
| S-EPMC9166362 | biostudies-literature
| S-EPMC1951850 | biostudies-literature
| S-EPMC3718118 | biostudies-literature
| S-EPMC10268282 | biostudies-literature
| S-EPMC5036320 | biostudies-literature
| S-EPMC10107939 | biostudies-literature
| S-EPMC2074879 | biostudies-literature
| S-EPMC10121019 | biostudies-literature
| S-EPMC3930494 | biostudies-literature