Project description:Abnormal tail biting behaviour is a major welfare problem for pigs receiving the behaviour, as well as an indication of decreased welfare in the pigs performing it. However, not all pigs in a pen perform or receive tail biting behaviour and it has recently been shown that these 'neutral' pigs not only differ in their behaviour, but also in their gene expression compared to performers and receivers of tail biting in the same pen. To investigate whether this difference was linked to the cause or a consequence of them not being involved in the outbreak of tail biting, behaviour and brain gene expression was compared with 'control' pigs housed in pens with no tail biting. It was shown that the pigs housed in control pens performed a wider variety of pig-directed abnormal behaviour (belly nosing 0.95±1.59, tail in mouth 0.31±0.60 and 'other' abnormal 1.53±4.26; mean±S.D) compared to the neutral pigs (belly nosing 0.30±0.62, tail in mouth 0.13±0.50 and "other" abnormal 0.42±1.06). With Affymetrix gene expression arrays, 107 transcripts were identified as differently expressed (p<0.05) between these two categories of pigs. Several of these transcripts had already been shown to be differently expressed in the neutral pigs when they were compared to performers and receivers of tail biting in the same pen in an earlier study. Hence, the different expression of these genes cannot be a consequence of the neutral pigs not being involved in tail biting behaviour, but rather linked to the cause contributing to why they were not involved in tail biting interactions. These neutral pigs seem to have a genetic and behavioural profile that somehow contributes to them being resistant to performing or receiving pig-directed abnormal behaviour, such as tail biting, even when housed in an environment that elicits that behaviour in other pigs.
Project description:Tail-biting is globally recognized as a welfare concern for commercial swine production. Substantial research has been undertaken to identify risk factors and intervention methods to decrease and understand this vice. Tail-biting appears to be multifactorial and has proven difficult to predict and control. The primary objective of the scoping review was to identify and chart all available literature on the risk factors and interventions associated with tail-biting in pigs. A secondary objective was to identify gaps in the literature and identify the relevance for a systematic review. An online literature search of four databases, encompassing English, peer-reviewed and grey literature published from 1 January 1970 to 31 May 2019, was conducted. Relevance screening and charting of included articles were performed by two independent reviewers. A total of 465 citations were returned from the search strategy. Full-text screening was conducted on 118 articles, with 18 being excluded in the final stage. Interventions, possible risk factors, as well as successful and unsuccessful outcomes were important components of the scoping review. The risk factors and interventions pertaining to tail-biting were inconsistent, demonstrating the difficulty of inducing tail-biting in an experimental environment and the need for standardizing terms related to the behavior.
Project description:Tail biting is both an important economic and a welfare problem. The primary preventive measure, almost on a routine basis throughout Europe, remains tail docking following a risk analysis. This study aimed to get insight on the perceptions of Greek pig farmers towards tail docking, intervention measures, and risk factors of tail biting, as well as opinions on pig welfare themes. Eighty-two farmers answered a questionnaire provided online and in printed form. In the case of a tail-biting outbreak, the most important intervention measure is the removal of the bitten pig (victim), while feed quality, air movements, and stocking density were ranked as the highest risk factors (p ≤ 0.05). Chains are the most common type of enrichment by 67% followed by plastic objects by 29.5%. Almost half of the farmers reported having no tail-biting problem on their farm, while 64.4% of the respondents have already tried at least once to raise pigs with intact tails. To reduce routine tail docking, it is essential to apply specific farm-oriented solutions effectively. To succeed in this aim, it is important to consider farmers' concerns and practices. This study is the first step in that direction.
Project description:Tail posture (i.e., hanging or curled) has been suggested to be an indicator of tail biting, and hanging tails predisposed to damage. The aim of this study was to investigate if tail posture was feasible as a tail damage indicator in a commercial setting. The study was carried out on one batch of 459 undocked finishing pigs (30⁻120 kg in weight). Weekly scoring of tail posture was combined with the scoring of tail lesions. Tail posture was observed at feeding to facilitate the usage of the method in commercial settings. A curly tail was observed in 94% of the observations. Pigs with tails scored with "wound" were 4.15 (p < 0.0001) times more likely to have hanging tails, and pigs scored with "inflamed wounds" were 14.24 (p < 0.0001) times more likely to have hanging tails, compared to pigs with nondamaged tails. Tail posture correctly classified tails with "wound" or "inflamed wound" 67.5% of the time, with 55.2% sensitivity and 79.7% specificity, respectively. The method of observing the tail position at feeding seems useful as a complement to normal inspection for detecting tail biting before tail wounds are visible to the caretaker.
Project description:Tail-biting (TB) in pigs is a serious behavioral disorder. It is an important challenge in swine production as it impacts animal welfare and health and the economics and safety of the pork meat supply chain. To prevent TB, approaches including enrichment material and tail docking are proposed but none are optimal. Nutrition appears to be an important factor in TB behavior, perhaps by modulating the intestinal microbiota (IM). Our aim was to assess the association between TB behavior and IM in pigs through comparisons of IM in groups of biter, bitten and non-biter/non-bitten pigs. Each group composed of 12 pigs was formed at the beginning of the growing/finishing phase based on a target behavior analysis centered on TB behavior for the biter group and a score of damages caused to the tail for the bitten group. Blood and fecal samples were collected from each pig during a TB episode, at time 0, t0, and when the TB episode was considered finished, 4 weeks later, at time 1, t1. Serum cortisol level was determined by ELISA and used as an indicator of stress. The pig's fecal microbiota was analyzed from DNA extracted from freshly collected fecal matter using amplicon sequencing of the V4 hypervariable region of the 16S rRNA gene. Serum cortisol levels were significantly higher in either the biter or bitten pig groups compared to the negative control group (p = 0.02 and p = 0.01, respectively). The microbiota alpha-diversity was not significantly different between all groups, biter, bitten and negative control. Analyses of beta-diversity, however, revealed a significant difference between either the biter or the bitten group in comparison to the non-biter/non-bitten negative control group in terms of structure and composition of the microbiota. Lactobacillus were significantly more abundant in the negative control group compared to the two other groups (p = 0.001). No significant difference was revealed between the biter and bitten groups. Quantitative real-time PCR (qPCR) confirmed that lactobacilli were more abundant in the negative control group. Our study indicates that TB behavior is associated with the IM composition in pigs.
Project description:Tail biting is a widespread problem in pig production systems and has a negative impact on both animal welfare and farm income. This explorative study aims to validate how tail biting is related to general behaviors at the individual level and explore whether these behaviors are related to a particular type of tail biting: two-stage, sudden-forceful, obsessive, or epidemic. This research was conducted in a standard commercial setting where 89 tail-docked pre-finishing piglets divided into 8 groups were observed 4 days per week from 5 to 8 weeks of age. Each piglet was observed for a total of 160 min using continuous focal sampling. Ten individual behaviors were recorded based on the general behaviors expected to be linked to giving tail biting (PCA1), receiving tail biting (PCA2), and tail biting damage (PCA3). These PCAs were assembled and related to tail biting given, tail biting received, and tail biting lesions. Tail biting did not lead to major damage on the piglets' tail at 8 weeks of age but was observed 420 times, where most of the individuals (72%) were categorized as "biters and victims." When relating PCA1 with tail biting given, piglets that gave more tail biting showed more "active exploration." When relating PCA2 with tail biting received, piglets receiving more tail biting were more "explored while active" and "attacked and explored." When relating PCA2 with tail biting lesions, piglets presenting lesions showed more "agonism." Surprisingly, tail biting lesions were not significantly related to PCA3. The relationship between explorative behaviors and tail biting indicates that the pre-damage stage of two-stage tail biting was the predominant tail biting type, while the damaging stage was likely incipient. The relationship between tail biting and aggression, as well as the minor tail lesions observed suggest that sudden-forceful tail biting was probably present even though it was rarely seen. Obsessive and epidemic tail biting were not observed. This study demonstrates that studying tail biting at the individual level helps to identify the type of tail biting present. This gives directions to farmers for applying appropriate measures to prevent the development of tail biting behavior in piglets.
Project description:Tail biting is a major welfare and economic problem for indoor pig producers worldwide. Low tail posture is an early warning sign which could reduce tail biting unpredictability. Taking a precision livestock farming approach, we used Time-of-flight 3D cameras, processing data with machine vision algorithms, to automate the measurement of pig tail posture. Validation of the 3D algorithm found an accuracy of 73.9% at detecting low vs. not low tails (Sensitivity 88.4%, Specificity 66.8%). Twenty-three groups of 29 pigs per group were reared with intact (not docked) tails under typical commercial conditions over 8 batches. 15 groups had tail biting outbreaks, following which enrichment was added to pens and biters and/or victims were removed and treated. 3D data from outbreak groups showed the proportion of low tail detections increased pre-outbreak and declined post-outbreak. Pre-outbreak, the increase in low tails occurred at an increasing rate over time, and the proportion of low tails was higher one week pre-outbreak (-1) than 2 weeks pre-outbreak (-2). Within each batch, an outbreak and a non-outbreak control group were identified. Outbreak groups had more 3D low tail detections in weeks -1, +1 and +2 than their matched controls. Comparing 3D tail posture and tail injury scoring data, a greater proportion of low tails was associated with more injured pigs. Low tails might indicate more than just tail biting as tail posture varied between groups and over time and the proportion of low tails increased when pigs were moved to a new pen. Our findings demonstrate the potential for a 3D machine vision system to automate tail posture detection and provide early warning of tail biting on farm.
Project description:The study aimed to assess the effectiveness of a tail-biting risk assessment scheme. The scheme consisted of trained private veterinary practitioners (assessors) applying a risk assessment tool on commercial pig farms to six pens per farm. The assessment tool included animal and non-animal-based observations which were used to determine the perceived risk of tail biting for each pen. For this study 27 farms were assessed, and a subsequent batch of pigs from each farm underwent post-mortem tail lesion scoring at the abattoir. The assessments revealed that a high percentage of pens had fully slatted flooring (92%) and mixed-sex populations (84%), with a significant proportion of pens containing pigs which were all tail docked (92%). Most pens (86%) did not allow all pigs simultaneous access to feeders. Enrichment was present in 88% of the pens, but most (46%) were supplied with only one item, and only 15% offering multiple enrichment types. The study found no significant associations between the risk of tail biting and visible injuries, dirty flanks, or tucked tails, as assessed by the assessors (P > 0.05). Similarly, the risk of tail biting reported per pen was not associated with aggressive, damaging, or exploratory behaviours (P > 0.05). At the abattoir, 96% of pigs' tails exhibited minor skin damage, with only 4% showing moderate to severe damage. Furthermore, no links were found between the scores obtained during slaughter and the risk of tail biting, as reported by the assessors (P < 0.05). Although the tool was useful in identifying several improvements that could be made at farm level in areas such as stocking density, enrichment provision and reducing tail docking, overall the results underscored the need for improved training of assessors, and the challenge of associating management practices and animal based measures with tail-biting risk.
Project description:Tail biting is an abnormal behaviour that causes stress, injury and pain. Given the critical role of the gut-microbiota in the development of behavioural problems in humans and animals, the aim of this study was to determine whether pigs that are biters, victims of tail biting or controls (nine matched sets of pigs) have a different microbiota composition, diversity and microbial metabolite profile. We collected faecal and blood samples from each individual for analysis. The gut microbiota composition was most different between the biter and the control pigs, with a higher relative abundance of Firmicutes in tail biter pigs than the controls. Furthermore, we detected differences in faecal and plasma short chain fatty acids (SCFA) profiles between the biter and victim pigs, suggesting physiological differences even though they are kept in the same pen. Thus, in addition to supporting an association between the gut microbiota and tail biting in pigs, this study also provides the first evidence of an association between tail biting and SCFA. Therefore, further research is needed to confirm these associations, to determine causality and to study how the SCFA profiles of an individual play a role in the development of tail biting behaviour.