Unknown

Dataset Information

0

A fast, resource efficient, and reliable rule-based system for COVID-19 symptom identification.


ABSTRACT:

Objective

With COVID-19, there was a need for a rapidly scalable annotation system that facilitated real-time integration with clinical decision support systems (CDS). Current annotation systems suffer from a high-resource utilization and poor scalability limiting real-world integration with CDS. A potential solution to mitigate these issues is to use the rule-based gazetteer developed at our institution.

Materials and methods

Performance, resource utilization, and runtime of the rule-based gazetteer were compared with five annotation systems: BioMedICUS, cTAKES, MetaMap, CLAMP, and MedTagger.

Results

This rule-based gazetteer was the fastest, had a low resource footprint, and similar performance for weighted microaverage and macroaverage measures of precision, recall, and f1-score compared to other annotation systems.

Discussion

Opportunities to increase its performance include fine-tuning lexical rules for symptom identification. Additionally, it could run on multiple compute nodes for faster runtime.

Conclusion

This rule-based gazetteer overcame key technical limitations facilitating real-time symptomatology identification for COVID-19 and integration of unstructured data elements into our CDS. It is ideal for large-scale deployment across a wide variety of healthcare settings for surveillance of acute COVID-19 symptoms for integration into prognostic modeling. Such a system is currently being leveraged for monitoring of postacute sequelae of COVID-19 (PASC) progression in COVID-19 survivors. This study conducted the first in-depth analysis and developed a rule-based gazetteer for COVID-19 symptom extraction with the following key features: low processor and memory utilization, faster runtime, and similar weighted microaverage and macroaverage measures for precision, recall, and f1-score compared to industry-standard annotation systems.

SUBMITTER: Sahoo HS 

PROVIDER: S-EPMC8374371 | biostudies-literature | 2021 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications


<h4>Objective</h4>With COVID-19, there was a need for a rapidly scalable annotation system that facilitated real-time integration with clinical decision support systems (CDS). Current annotation systems suffer from a high-resource utilization and poor scalability limiting real-world integration with CDS. A potential solution to mitigate these issues is to use the rule-based gazetteer developed at our institution.<h4>Materials and methods</h4>Performance, resource utilization, and runtime of the  ...[more]

Similar Datasets

| S-EPMC7966840 | biostudies-literature
| S-EPMC9846882 | biostudies-literature
| S-EPMC10300286 | biostudies-literature
| S-EPMC10359484 | biostudies-literature
| S-EPMC7971049 | biostudies-literature
| S-EPMC4315405 | biostudies-literature
| S-EPMC4325845 | biostudies-literature
| S-BSST563 | biostudies-other
| S-EPMC4744647 | biostudies-literature
| S-EPMC7263765 | biostudies-literature