Multi-layered network-based pathway activity inference using directed random walks: application to predicting clinical outcomes in urologic cancer.
Ontology highlight
ABSTRACT: To better understand the molecular features of cancers, a comprehensive analysis using multiomics data has been conducted. Additionally, a pathway activity inference method has been developed to facilitate the integrative effects of multiple genes. In this respect, we have recently proposed a novel integrative pathway activity inference approach, iDRW, and demonstrated the effectiveness of the method with respect to dichotomizing two survival groups. However, there were several limitations, such as a lack of generality. In this study, we designed a directed gene-gene graph using pathway information by assigning interactions between genes in multiple layers of networks. : As a proof-of-concept study, it was evaluated using three genomic profiles of urologic cancer patients. The proposed integrative approach achieved improved outcome prediction performances compared with a single genomic profile alone and other existing pathway activity inference methods. The integrative approach also identified common/cancer-specific candidate driver pathways as predictive prognostic features in urologic cancers. Furthermore, it provides better biological insights into the prioritized pathways and genes in an integrated view using a multi-layered gene-gene network. Our framework is not specifically designed for urologic cancers and can be generally applicable for various datasets. iDRW is implemented as the R software package. The source codes are available at https://github.com/sykim122/iDRW. Supplementary data are available at Bioinformatics online.
SUBMITTER: Yeon Kim S
PROVIDER: S-EPMC8388033 | biostudies-literature | 2021 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA