Project description:Rare cases of thrombosis with thrombocytopenia syndrome (TTS) have been reported after AZD1222. Anti-platelet factor-4 (PF4) antibodies were observed in patients following presentation of TTS, however it is unclear if AZD1222 was responsible for inducing production of anti-PF4. Paired samples (baseline and day-15) from a phase 3 trial of AZD1222 vs placebo were analyzed for anti-PF4 levels; 19/1727 (1.1%, AZD1222) vs 7/857 (0.8%, placebo) participants were anti-PF4-IgG-negative at baseline but had moderate Day-15 levels (P = 0.676) and 0/35 and 1/20 (5.0%) had moderate levels at baseline but high Day-15 levels. These data indicate that AZD1222 does not induce a clinically relevant general increase in anti-PF4 IgG.
Project description:BackgroundThe mainstay of control of the coronavirus disease 2019 (Covid-19) pandemic is vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Within a year, several vaccines have been developed and millions of doses delivered. Reporting of adverse events is a critical postmarketing activity.MethodsWe report findings in 23 patients who presented with thrombosis and thrombocytopenia 6 to 24 days after receiving the first dose of the ChAdOx1 nCoV-19 vaccine (AstraZeneca). On the basis of their clinical and laboratory features, we identify a novel underlying mechanism and address the therapeutic implications.ResultsIn the absence of previous prothrombotic medical conditions, 22 patients presented with acute thrombocytopenia and thrombosis, primarily cerebral venous thrombosis, and 1 patient presented with isolated thrombocytopenia and a hemorrhagic phenotype. All the patients had low or normal fibrinogen levels and elevated d-dimer levels at presentation. No evidence of thrombophilia or causative precipitants was identified. Testing for antibodies to platelet factor 4 (PF4) was positive in 22 patients (with 1 equivocal result) and negative in 1 patient. On the basis of the pathophysiological features observed in these patients, we recommend that treatment with platelet transfusions be avoided because of the risk of progression in thrombotic symptoms and that the administration of a nonheparin anticoagulant agent and intravenous immune globulin be considered for the first occurrence of these symptoms.ConclusionsVaccination against SARS-CoV-2 remains critical for control of the Covid-19 pandemic. A pathogenic PF4-dependent syndrome, unrelated to the use of heparin therapy, can occur after the administration of the ChAdOx1 nCoV-19 vaccine. Rapid identification of this rare syndrome is important because of the therapeutic implications.
Project description:The emergence of SARS-CoV-2 variants raises concerns of reduced COVID-19 vaccine efficacy. We investigated the humoral immunity in uninfected and previously infected ChAdOx1 nCoV-19, BNT162b2 and CoronaVac vaccinees, who have received complete regimes of vaccines by means of a SARS-CoV-2 surrogate virus blocking test. The ChAdOx1 nCoV-19 (p = 0.0013) and BNT162b2 (p = 0.0005) vaccines induced significant higher blocking activity with longer durability against the Spike (S) protein receptor binding domain (RBD) of wild type SARS-CoV-2 than the CoronaVac vaccine in uninfected vaccinees. Prior infection improved protection in the CoronaVac vaccinees. Subsequent investigation on the breadth of SARS-CoV-2 vaccine-induced antibody blocking responses, revealed that all vaccine platforms cross-protected uninfected vaccinees against all variant of concerns, except Omicron. Prior infection protected the ChAdOx1 nCoV-19 and BNT162b2 vaccinees against Omicron but not CoronaVac vaccinees. Our study suggests that vaccines that induce broader sterilizing immunity are essential to fight against fast-emerging variants.
Project description:SARS-CoV-2 variants of concern (VOCs) have caused a significant increase in infections worldwide. Despite high vaccination rates in industrialized countries, the fourth VOC, Omicron, has outpaced the Delta variant and is causing breakthrough infections in individuals with two booster vaccinations. While the magnitude of morbidity and lethality is lower in Omicron, the infection rate and global spread are rapid. Using a specific IgG multipanel-ELISA with the spike protein’s receptor-binding domain (RBD) from recombinant Alpha, Gamma, Delta, and Omicron variants, sera from health-care workers from the Medical University of Vienna were tested pre-pandemic and post-vaccination (BNT162b2; ChAdOx1 nCoV-19). The cohort was continuously monitored by SARS-CoV-2 testing and commercial nucleocapsid IgG ELISA. RBD IgG ELISA showed significantly lower reactivity against the Omicron-RBD compared to the Alpha variant in all individuals (p < 0.001). IgG levels were independent of sex, but were significantly higher in BNT162b2 recipients <45 years of age for Alpha, Gamma, and Delta (p < 0.001; p = 0.040; p = 0.004, respectively). Pre-pandemic cross-reactive anti-Omicron IgG was detected in 31 individuals and was increased 8.78-fold after vaccination, regardless of vaccine type. The low anti-RBD Omicron IgG level could explain the breakthrough infections and their presence could also contribute to a milder COVID-19 course by cross-reactivity and broadening the adaptive immunity.
Project description:Comprehensive assessment of SARS-CoV-2 antibodies against antigenic epitopes and cross-neutralization on variants is essential to monitor after infection or vaccination. From 32 COVID-19 patients and 40 vaccinated individuals [20 Oxford-AstraZeneca (AZ) and 20 Pfizer-BioNTech (BNT)], 348 serial sera are collected until 40 days after infection and 3 months after homologous booster vaccination. Antibody levels were monitored using a multiplex-bead assay including variant spike antigens, Roche (S1/RBD total) and a surrogate virus neutralization test (GenScript). Anti-S/S1/RBD levels were higher than anti-S2/N levels from 2 weeks after infection and were higher in severe infection (P < 0.05). Vaccination showed highest antibody levels after 1-month booster and had consistently high levels in the order of anti-full S, anti-RBD, anti-S1 and anti-S2. Infection induced higher anti-S2/N levels than prime vaccination (P < 0.05). Three months after BNT/BNT vaccination, antibody levels against S1/RBD and 23 variant antigens were higher than post-infection or AZ groups (P < 0.05). Regarding intraindividual changes from post-prime to post-boost vaccination, boost induced a 1.1- to 3.9-fold increase on multiplex-bead assay, 22.8- to 24.2-fold on Roche assay and 22.8- to 24.2-fold on GenScript assay. Post-prime levels by multiplex-bead assay predicted post-boost levels, but Roche and GenScript results were not predictive in the AZ group. The kinetics of SARS-CoV-2 antibody levels vary depending on the antigenic epitopes, assay kit, disease severity or vaccine type. Assessing seroconversion using multiplex-bead assays may contribute to monitoring the disease course, adjusting vaccination strategies, and accelerating vaccination efficacy.
Project description:Currently approved viral vector-based and mRNA-based vaccine approaches against coronavirus disease 2019 (COVID-19) consider only homologous prime-boost vaccination. After reports of thromboembolic events, several European governments recommended using AstraZeneca's ChAdOx1-nCov-19 (ChAd) only in individuals older than 60 years, leaving millions of already ChAd-primed individuals with the decision to receive either a second shot of ChAd or a heterologous boost with mRNA-based vaccines. However, such combinations have not been tested so far. We used Hannover Medical School's COVID-19 Contact Study cohort of healthcare professionals to monitor ChAd-primed immune responses before and 3 weeks after booster with ChAd (n = 32) or BioNTech/Pfizer's BNT162b2 (n = 55). Although both vaccines boosted prime-induced immunity, BNT162b2 induced significantly higher frequencies of spike-specific CD4+ and CD8+ T cells and, in particular, high titers of neutralizing antibodies against the B.1.1.7, B.1.351 and P.1 variants of concern of severe acute respiratory syndrome coronavirus 2.
Project description:This study elucidated the clinical, humoral immune response and genomic analysis of vaccine breakthrough (VBT) infections after ChAdOx1 nCoV-19/Covishield vaccine in healthcare workers (HCWs). Amongst 1858 HCWs, 1639 had received either two doses (1346) or a single dose (293) of ChAdOx1 nCoV-19 vaccine. SARS-CoV-2 IgG antibodies and neutralizing antibodies were measured in the vaccinated group and the development of SARS-CoV-2 infection was monitored.Forty-six RT-PCR positive samples from the 203 positive samples were subjected to whole genome sequencing (WGS). Of the 203 (10.92%) infected HCWs, 21.46% (47/219) were non-vaccinated, which was significantly more than 9.52% (156/1639) who were vaccinated and infection was higher in doctors and nurses. Unvaccinated HCWs had 1.57 times higher risk compared to partially vaccinated HCWs and 2.49 times higher risk than those who were fully vaccinated.The partially vaccinated were at higher risk than the fully vaccinated (RR 1.58). Antibody non-response was seen in 3.44% (4/116), low antibody levels in 15.51% (18/116) and medium levels were found in 81.03% (94/116). Fully vaccinated HCWs had a higher antibody response at day 42 than those who were partially vaccinated (8.96 + 4.00 vs. 7.17 + 3.82). Whole genome sequencing of 46 samples revealed that the Delta variant (B.1.617.2) was predominant (69.5%). HCWs who had received two doses of vaccine showed better protection from mild, moderate, or severe infection, with a higher humoral immune response than those who had received a single dose. The genomic analysis revealed the predominance of the Delta variant (B.1.617.2) in the VBT infections.
Project description:Intramuscular vaccination with ChAdOx1 nCoV-19/AZD1222 protected rhesus macaques against pneumonia but did not reduce shedding of SARS-CoV-2. Here we investigate whether intranasally administered ChAdOx1 nCoV-19 reduces shedding, using a SARS-CoV-2 virus with the D614G mutation in the spike protein. Viral load in swabs obtained from intranasally vaccinated hamsters was significantly decreased compared to controls and no viral RNA or infectious virus was found in lung tissue, both in a direct challenge and a transmission model. Intranasal vaccination of rhesus macaques resulted in reduced shedding and a reduction in viral load in bronchoalveolar lavage and lower respiratory tract tissue. In conclusion, intranasal vaccination reduced shedding in two different SARS-CoV-2 animal models, justifying further investigation as a potential vaccination route for COVID-19 vaccines.
Project description:BackgroundSeveral cases of unusual thrombotic events and thrombocytopenia have developed after vaccination with the recombinant adenoviral vector encoding the spike protein antigen of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (ChAdOx1 nCov-19, AstraZeneca). More data were needed on the pathogenesis of this unusual clotting disorder.MethodsWe assessed the clinical and laboratory features of 11 patients in Germany and Austria in whom thrombosis or thrombocytopenia had developed after vaccination with ChAdOx1 nCov-19. We used a standard enzyme-linked immunosorbent assay to detect platelet factor 4 (PF4)-heparin antibodies and a modified (PF4-enhanced) platelet-activation test to detect platelet-activating antibodies under various reaction conditions. Included in this testing were samples from patients who had blood samples referred for investigation of vaccine-associated thrombotic events, with 28 testing positive on a screening PF4-heparin immunoassay.ResultsOf the 11 original patients, 9 were women, with a median age of 36 years (range, 22 to 49). Beginning 5 to 16 days after vaccination, the patients presented with one or more thrombotic events, with the exception of 1 patient, who presented with fatal intracranial hemorrhage. Of the patients with one or more thrombotic events, 9 had cerebral venous thrombosis, 3 had splanchnic-vein thrombosis, 3 had pulmonary embolism, and 4 had other thromboses; of these patients, 6 died. Five patients had disseminated intravascular coagulation. None of the patients had received heparin before symptom onset. All 28 patients who tested positive for antibodies against PF4-heparin tested positive on the platelet-activation assay in the presence of PF4 independent of heparin. Platelet activation was inhibited by high levels of heparin, Fc receptor-blocking monoclonal antibody, and immune globulin (10 mg per milliliter). Additional studies with PF4 or PF4-heparin affinity purified antibodies in 2 patients confirmed PF4-dependent platelet activation.ConclusionsVaccination with ChAdOx1 nCov-19 can result in the rare development of immune thrombotic thrombocytopenia mediated by platelet-activating antibodies against PF4, which clinically mimics autoimmune heparin-induced thrombocytopenia. (Funded by the German Research Foundation.).