Unknown

Dataset Information

0

Fungal and enzymatic bio-depolymerization of waste post-consumer poly(ethylene terephthalate) (PET) bottles using Penicillium species.


ABSTRACT: Poly(ethylene terephthalate) (PET) is a petroleum-based plastic that is massively produced and used worldwide. A promising PET recycling process to circumvent petroleum feedstock consumption and help to reduce environmental pollution is microbial or enzymatic biodegradation of post-consumer (PC) PET packages to its monomers-terephthalic acid (TPA) and ethylene glycol (EG)-or to key intermediates in PET synthesis-such as mono- and bis-(2-hydroxyethyl) terephthalate (MHET and BHET). Two species of filamentous fungi previously characterized as lipase producers (Penicillium restrictum and P. simplicissimum) were evaluated in submerged fermentation for induction of lipase production by two inducers (BHET and amorphous PET), and for biodegradation of two substrates (BHET and PC-PET). BHET induced lipase production in P. simplicissimum, achieving a peak of 606.4 U/L at 49 h (12.38 U/L.h), representing an almost twofold increase in comparison to the highest peak in the control (without inducers). Microbial biodegradation by P. simplicissimum after 28 days led to a 3.09% mass loss on PC-PET fragments. In contrast, enzymatic PC-PET depolymerization by cell-free filtrates from a P. simplicissimum culture resulted in low concentrations of BHET, MHET and TPA (up to 9.51 µmol/L), suggesting that there are mechanisms at the organism level that enhance biodegradation. Enzymatic BHET hydrolysis revealed that P. simplicissimum extracellular enzymes catalyze the release of MHET as the predominant product. Our results show that P. simplicissimum is a promising biodegrader of PC-PET that can be further explored for monomer recovery in the context of feedstock recycling processes.

SUBMITTER: Moyses DN 

PROVIDER: S-EPMC8446152 | biostudies-literature | 2021 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Fungal and enzymatic bio-depolymerization of waste post-consumer poly(ethylene terephthalate) (PET) bottles using <i>Penicillium</i> species.

Moyses Danuza N DN   Teixeira Danielle A DA   Waldow Vinicius A VA   Freire Denise M G DMG   Castro Aline M AM  

3 Biotech 20210916 10


Poly(ethylene terephthalate) (PET) is a petroleum-based plastic that is massively produced and used worldwide. A promising PET recycling process to circumvent petroleum feedstock consumption and help to reduce environmental pollution is microbial or enzymatic biodegradation of post-consumer (PC) PET packages to its monomers-terephthalic acid (TPA) and ethylene glycol (EG)-or to key intermediates in PET synthesis-such as mono- and bis-(2-hydroxyethyl) terephthalate (MHET and BHET). Two species of  ...[more]

Similar Datasets

| S-EPMC6863199 | biostudies-literature
| S-EPMC7904861 | biostudies-literature
| S-EPMC5658601 | biostudies-literature
| S-EPMC11789978 | biostudies-literature
| S-EPMC9921498 | biostudies-literature
| S-EPMC8747168 | biostudies-literature
| S-EPMC10108200 | biostudies-literature
| S-EPMC11921030 | biostudies-literature
| S-EPMC8256426 | biostudies-literature