Unknown

Dataset Information

0

Investigating the spectral features of the brain meso-scale structure at rest.


ABSTRACT: Recent studies provide novel insights into the meso-scale organization of the brain, highlighting the co-occurrence of different structures: classic assortative (modular), disassortative, and core-periphery. However, the spectral properties of the brain meso-scale remain mostly unexplored. To fill this knowledge gap, we investigated how the meso-scale structure is organized across the frequency domain. We analyzed the resting state activity of healthy participants with source-localized high-density electroencephalography signals. Then, we inferred the community structure using weighted stochastic block-model (WSBM) to capture the landscape of meso-scale structures across the frequency domain. We found that different meso-scale modalities co-exist and are diversely organized over the frequency spectrum. Specifically, we found a core-periphery structure dominance, but we also highlighted a selective increase of disassortativity in the low frequency bands (<8 Hz), and of assortativity in the high frequency band (30-50 Hz). We further described other features of the meso-scale organization by identifying those brain regions which, at the same time, (a) exhibited the highest degree of assortativity, disassortativity, and core-peripheriness (i.e., participation) and (b) were consistently assigned to the same community, irrespective from the granularity imposed by WSBM (i.e., granularity-invariance). In conclusion, we observed that the brain spontaneous activity shows frequency-specific meso-scale organization, which may support spatially distributed and local information processing.

SUBMITTER: Iandolo R 

PROVIDER: S-EPMC8449100 | biostudies-literature | 2021 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Investigating the spectral features of the brain meso-scale structure at rest.

Iandolo Riccardo R   Semprini Marianna M   Sona Diego D   Mantini Dante D   Avanzino Laura L   Chiappalone Michela M  

Human brain mapping 20210731 15


Recent studies provide novel insights into the meso-scale organization of the brain, highlighting the co-occurrence of different structures: classic assortative (modular), disassortative, and core-periphery. However, the spectral properties of the brain meso-scale remain mostly unexplored. To fill this knowledge gap, we investigated how the meso-scale structure is organized across the frequency domain. We analyzed the resting state activity of healthy participants with source-localized high-dens  ...[more]

Similar Datasets

| S-EPMC11753644 | biostudies-literature
| S-EPMC4915991 | biostudies-literature
| S-EPMC9046151 | biostudies-literature
| S-EPMC11838943 | biostudies-literature
| S-EPMC2755486 | biostudies-literature
| S-EPMC11875018 | biostudies-literature
| S-EPMC3437854 | biostudies-other
| S-EPMC6981085 | biostudies-literature
| S-EPMC10799710 | biostudies-literature
| S-EPMC5560701 | biostudies-literature