Unknown

Dataset Information

0

A synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries.


ABSTRACT: The current Li-based battery technology is limited in terms of energy contents. Therefore, several approaches are considered to improve the energy density of these energy storage devices. Here, we report the combination of a heteroatom-based gel polymer electrolyte with a hybrid cathode comprising of a Li-rich oxide active material and graphite conductive agent to produce a high-energy "shuttle-relay" Li metal battery, where additional capacity is generated from the electrolyte's anion shuttling at high voltages. The gel polymer electrolyte, prepared via in situ polymerization in an all-fluorinated electrolyte, shows adequate ionic conductivity (around 2 mS cm-1 at 25 °C), oxidation stability (up to 5.5 V vs Li/Li+), compatibility with Li metal and safety aspects (i.e., non-flammability). The polymeric electrolyte allows for a reversible insertion of hexafluorophosphate anions into the conductive graphite (i.e., dual-ion mechanism) after the removal of Li ions from Li-rich oxide (i.e., rocking-chair mechanism).

SUBMITTER: Wu J 

PROVIDER: S-EPMC8484457 | biostudies-literature | 2021 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

A synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries.

Wu Junru J   Wang Xianshu X   Liu Qi Q   Wang Shuwei S   Zhou Dong D   Kang Feiyu F   Shanmukaraj Devaraj D   Armand Michel M   Rojo Teofilo T   Li Baohua B   Wang Guoxiu G  

Nature communications 20210930 1


The current Li-based battery technology is limited in terms of energy contents. Therefore, several approaches are considered to improve the energy density of these energy storage devices. Here, we report the combination of a heteroatom-based gel polymer electrolyte with a hybrid cathode comprising of a Li-rich oxide active material and graphite conductive agent to produce a high-energy "shuttle-relay" Li metal battery, where additional capacity is generated from the electrolyte's anion shuttling  ...[more]

Similar Datasets

| S-EPMC9076527 | biostudies-literature
| S-EPMC11193789 | biostudies-literature
| S-EPMC9443466 | biostudies-literature
| S-EPMC9896055 | biostudies-literature
| S-EPMC8397401 | biostudies-literature
| S-EPMC11754442 | biostudies-literature
| S-EPMC9886912 | biostudies-literature
| S-EPMC6765010 | biostudies-literature
| S-EPMC9338099 | biostudies-literature
| S-EPMC9485319 | biostudies-literature