Project description:PurposeThis paper reports on the development of a tool for searching the contents of licensed full-text electronic book (e-book) collections.SettingThe Health Sciences Library System (HSLS) provides services to the University of Pittsburgh's medical programs and large academic health system.Brief descriptionThe HSLS has developed an innovative tool for federated searching of its e-book collections. Built using the XML-based Vivísimo development environment, the tool enables a user to perform a full-text search of over 2,500 titles from the library's seven most highly used e-book collections. From a single "Google-style" query, results are returned as an integrated set of links pointing directly to relevant sections of the full text. Results are also grouped into categories that enable more precise retrieval without reformulation of the search.Results/evaluationA heuristic evaluation demonstrated the usability of the tool and a web server log analysis indicated an acceptable level of usage. Based on its success, there are plans to increase the number of online book collections searched.ConclusionThis library's first foray into federated searching has produced an effective tool for searching across large collections of full-text e-books and has provided a good foundation for the development of other library-based federated searching products.
Project description:We propose herein a new method of DNA distribution, whereby DNA clones or PCR products are printed directly onto the pages of books and delivered to users along with relevant scientific information. DNA sheets, comprising water-soluble paper onto which DNA is spotted, can be bound into books. Readers can easily extract the DNA fragments from DNA sheets and amplify them using PCR. We show that DNA sheets can withstand various conditions that may be experienced during bookbinding and delivery, such as high temperatures and humidity. Almost all genes (95%-100% of randomly selected RIKEN mouse cDNA clones) were recovered successfully by use of PCR. Readers can start their experiments after a 2-h PCR amplification without waiting for the delivery of DNA clones. The DNA Book thus provides a novel method for delivering DNA in a timely and cost-effective manner. A sample DNA sheet (carrying RIKEN mouse cDNA clones encoding genes of enzymes for the TCA cycle) is included in this issue for field-testing. We would greatly appreciate it if readers could attempt to extract DNA and report the results and whether the DNA sheet was shipped to readers in good condition.
Project description:Optimization of exposure parameters (target, filter, and kVp) in digital mammography necessitates maximization of the image signal-to-noise ratio (SNR), while simultaneously minimizing patient dose. The goal of this study is to compare, for each of the major commercially available full field digital mammography (FFDM) systems, the impact of the selection of technique factors on image SNR and radiation dose for a range of breast thickness and tissue types. This phantom study is an update of a previous investigation and includes measurements on recent versions of two of the FFDM systems discussed in that article, as well as on three FFDM systems not available at that time. The five commercial FFDM systems tested, the Senographe 2000D from GE Healthcare, the Mammomat Novation DR from Siemens, the Selenia from Hologic, the Fischer Senoscan, and Fuji's 5000MA used with a Lorad M-IV mammography unit, are located at five different university test sites. Performance was assessed using all available x-ray target and filter combinations and nine different phantom types (three compressed thicknesses and three tissue composition types). Each phantom type was also imaged using the automatic exposure control (AEC) of each system to identify the exposure parameters used under automated image acquisition. The figure of merit (FOM) used to compare technique factors is the ratio of the square of the image SNR to the mean glandular dose. The results show that, for a given target/filter combination, in general FOM is a slowly changing function of kVp, with stronger dependence on the choice of target/filter combination. In all cases the FOM was a decreasing function of kVp at the top of the available range of kVp settings, indicating that higher tube voltages would produce no further performance improvement. For a given phantom type, the exposure parameter set resulting in the highest FOM value was system specific, depending on both the set of available target/filter combinations, and on the receptor type. In most cases, the AECs of the FFDM systems successfully identified exposure parameters resulting in FOM values near the maximum ones, however, there were several examples where AEC performance could be improved.
Project description:A novel approach based on full-field indentation measurements to characterize and quantify the effect of contact in thin plates is presented. The proposed method has been employed to evaluate the indentation damage generated in the presence of bending deformation, resulting from the contact between a thin plate and a rigid sphere. For this purpose, the 3D Digital Image Correlation (3D-DIC) technique has been adopted to quantify the out of plane displacements at the back face of the plate. Tests were conducted using aluminum thin plates and a rigid bearing sphere to evaluate the influence of the thickness and the material behavior during contact. Information provided by the 3D-DIC technique has been employed to perform an indirect measurement of the contact area during the loading and unloading path of the test. A symmetrical distribution in the contact damage region due to the symmetry of the indenter was always observed. In the case of aluminum plates, the presence of a high level of plasticity caused shearing deformation as the load increased. Results show the full-field contact damage area for different plates' thicknesses at different loads. The contact damage region was bigger when the thickness of the specimen increased, and therefore, bending deformation was reduced. With the proposed approach, the elastic recovery at the contact location was quantified during the unloading, as well as the remaining permanent indentation damage after releasing the load. Results show the information obtained by full-field measurements at the contact location during the test, which implies a substantial improvement compared with pointwise techniques.
Project description:ObjectivesTo summarise and compare the performance of magnification mammography and digital zoom utilising a full-field digital mammography (FFDM) system in the detection and diagnosis of microcalcifications.MethodsWe ran an extended search in MEDLINE, EMBASE, CINAHL, Engineering Village and Web of Science. Diagnostic test studies, experimental breast phantom studies and a Monte Carlo phantom study were included. A narrative approach was selected to summarise and compare findings regarding the detection of microcalcifications, while a hierarchical model with bivariate analysis was used for the meta-analysis of sensitivity and specificity for diagnosing microcalcifications.ResultsNine studies were included. Phantom studies suggested that the size of microcalcifications, magnification or zoom factor, exposure factors and detector technology determine whether digital zoom is equivalent to magnification mammography in the detection of microcalcifications. Pooled sensitivity for magnification and zoom calculated from the diagnostic test studies was 0.93 (95% CI 0.84-0.97) and 0.85 (95% CI 0.70-0.94), respectively. Pooled specificity was 0.55 (95% CI 0.51-0.58) and 0.56 (95% CI 0.50-0.62), respectively. The differences between the sensitivities and specificities were not statistically significant.ConclusionsDigital zoom may be equivalent to magnification mammography. Diagnostic test studies and phantom studies using newer detector technology would contribute additional knowledge on this topic.Key points• The performance of digital zoom is comparable to magnification for detecting microcalcifications when newer detector technology and optimised imaging procedures are utilised. • The accuracy of digital zoom appears equivalent to geometric magnification in diagnosing microcalcifications.