Unknown

Dataset Information

0

Vesicle Impact Electrochemical Cytometry to Determine Carbon Nanotube-Induced Fusion of Intracellular Vesicles.


ABSTRACT: Carbon nanotube (CNT)-modified electrodes are used to obtain new measurements of vesicle content via amperometry. We have investigated the interaction between CNTs and isolated adrenal chromaffin vesicles (as a model) by vesicle impact electrochemical cytometry. Our data show that the presence of CNTs not only significantly increased the vesicular catecholamine number from 2,250,000 ± 112,766 molecules on a bare electrode to 3,880,000 ± 686,573 molecules on CNT/carbon fiber electrodes but also caused an enhancement in the maximum intensity of the current, which implies the existence of strong interactions between vesicle biolayers and CNTs and an altered electroporation process. We suggest that CNTs might perturb and destabilize the membrane structure of intracellular vesicles and cause the aggregation or fusion of vesicles into new vesicles with larger size and higher content. Our findings are consistent with previous computational and experimental results and support the hypothesis that CNTs as a mediator can rearrange the phospholipid bilayer membrane and trigger homotypic fusion of intracellular vesicles.

SUBMITTER: Hatamie A 

PROVIDER: S-EPMC8495673 | biostudies-literature | 2021 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Vesicle Impact Electrochemical Cytometry to Determine Carbon Nanotube-Induced Fusion of Intracellular Vesicles.

Hatamie Amir A   Ren Lin L   Zhang Xinwei X   Ewing Andrew G AG  

Analytical chemistry 20210909 39


Carbon nanotube (CNT)-modified electrodes are used to obtain new measurements of vesicle content via amperometry. We have investigated the interaction between CNTs and isolated adrenal chromaffin vesicles (as a model) by vesicle impact electrochemical cytometry. Our data show that the presence of CNTs not only significantly increased the vesicular catecholamine number from 2,250,000 ± 112,766 molecules on a bare electrode to 3,880,000 ± 686,573 molecules on CNT/carbon fiber electrodes but also c  ...[more]

Similar Datasets

| S-EPMC7108759 | biostudies-literature
| S-EPMC8679085 | biostudies-literature
| S-EPMC3245571 | biostudies-literature
| S-EPMC5511500 | biostudies-literature
| S-EPMC3686779 | biostudies-literature
| S-EPMC11419603 | biostudies-literature
| S-EPMC8126853 | biostudies-literature
| S-EPMC9850492 | biostudies-literature
| S-EPMC6956173 | biostudies-literature
| S-EPMC6223680 | biostudies-literature