Unknown

Dataset Information

0

Scalable Sacrificial Templating to Increase Porosity and Platinum Utilisation in Graphene-Based Polymer Electrolyte Fuel Cell Electrodes.


ABSTRACT: Polymer electrolyte fuel cells hold great promise for a range of applications but require advances in durability for widespread commercial uptake. Corrosion of the carbon support is one of the main degradation pathways; hence, corrosion-resilient graphene has been widely suggested as an alternative to traditional carbon black. However, the performance of bulk graphene-based electrodes is typically lower than that of commercial carbon black due to their stacking effects. This article reports a simple, scalable and non-destructive method through which the pore structure and platinum utilisation of graphene-based membrane electrode assemblies can be significantly improved. Urea is incorporated into the catalyst ink before deposition, and is then simply removed from the catalyst layer after spraying by submerging the electrode in water. This additive hinders graphene restacking and increases porosity, resulting in a significant increase in Pt utilisation and current density. This technique does not require harsh template etching and it represents a pathway to significantly improve graphene-based electrodes by introducing hierarchical porosity using scalable liquid processes.

SUBMITTER: Suter TAM 

PROVIDER: S-EPMC8539662 | biostudies-literature | 2021 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Scalable Sacrificial Templating to Increase Porosity and Platinum Utilisation in Graphene-Based Polymer Electrolyte Fuel Cell Electrodes.

Suter Theo A M TAM   Clancy Adam J AJ   Rubio Carrero Noelia N   Heitzmann Marie M   Guetaz Laure L   Shearing Paul R PR   Mattevi Cecilia C   Gebel Gérard G   Howard Christopher A CA   Shaffer Milo S P MSP   McMillan Paul F PF   Brett Dan J L DJL  

Nanomaterials (Basel, Switzerland) 20210928 10


Polymer electrolyte fuel cells hold great promise for a range of applications but require advances in durability for widespread commercial uptake. Corrosion of the carbon support is one of the main degradation pathways; hence, corrosion-resilient graphene has been widely suggested as an alternative to traditional carbon black. However, the performance of bulk graphene-based electrodes is typically lower than that of commercial carbon black due to their stacking effects. This article reports a si  ...[more]

Similar Datasets

| S-EPMC9148157 | biostudies-literature
| S-EPMC10751738 | biostudies-literature
| S-EPMC5827662 | biostudies-literature
| S-EPMC8569679 | biostudies-literature
| S-EPMC3985936 | biostudies-other
| S-EPMC3728593 | biostudies-literature
| S-EPMC7298353 | biostudies-literature
| S-EPMC9907015 | biostudies-literature
| S-EPMC11206414 | biostudies-literature