Project description:Coronaviruses comprise a large group of RNA viruses with diverse host specificity. The emergence of highly pathogenic strains like the SARS coronavirus (SARS-CoV), and the discovery of two new coronaviruses, NL-63 and HKU1, corroborates the high rate of mutation and recombination that have enabled them to cross species barriers and infect novel hosts. For that reason, the development of broad-spectrum antivirals that are effective against several members of this family is highly desirable. This goal can be accomplished by designing inhibitors against a target, such as the main protease 3CL(pro) (M(pro)), which is highly conserved among all coronaviruses. Here 3CL(pro) derived from the SARS-CoV was used as the primary target to identify a new class of inhibitors containing a halomethyl ketone warhead. The compounds are highly potent against SARS 3CL(pro) with K(i)'s as low as 300 nM. The crystal structure of the complex of one of the compounds with 3CL(pro) indicates that this inhibitor forms a thioether linkage between the halomethyl carbon of the warhead and the catalytic Cys 145. Furthermore, Structure Activity Relationship (SAR) studies of these compounds have led to the identification of a pharmacophore that accurately defines the essential molecular features required for the high affinity.
Project description:The search for effective treatment against novel coronavirus (COVID-19) remains a global challenge due to controversies on available vaccines. In this study, data of SARS coronavirus 3C-like protease (3CLpro) inhibitors; a key drug target in the coronavirus genome was retrieved from CHEMBL database. Quantitative Structure-Activity Relationship (QSAR) studies, Molecular docking, Absorption-Distribution-Metabolism-Excretion-Toxicity (ADMET) and molecular dynamics simulation (MDS) were carried out using these 3CLpro inhibitors. QSAR model constructed using the data had correlation coefficient R2 value of 0.907; cross-validated correlation coefficient Q2 value of 0.866 and test set predicted correlation coefficient R2pred value of 0.517. Variance inflation factor (VIF) values for descriptors contained in the model ranged from 1.352 to 1.68, hence, these descriptors were orthogonal to one another. Therefore, the model was statistically significant and can be used to screen and design new molecules for their inhibitory activity against 3CLpro. Molecular docking showed that seven of the compounds (inhibitors) used in the study had a remarkable binding affinity (-9.2 to -10.3 kcal/mol) for 3CLpro. ADMET study revealed that five (CHEMBL Accession IDs 19438, 196635, 377150, 208763, and 210097) of the seven compounds with good binding ability obeyed Lipinski's rule of five. Hence, they were compounds with drug-like properties. MDS analysis revealed that 3CLpro-compound 21, 3CLpro-compound 22, 3CLpro-compound 40 complexes are very stable as compared to the reference 3CLpro-X77 complex. Therefore, this study identified three potent inhibitors of 3CLpro viz. CHEMBL194398, CHEMBL196635, and CHEMBL210097 that can be further explored for the treatment of COVID-19.
Project description:Antiviral therapeutics to treat SARS-CoV-2 are needed to diminish the morbidity of the ongoing COVID-19 pandemic. A well-precedented drug target is the main viral protease (MPro ), which is targeted by an approved drug and by several investigational drugs. Emerging viral resistance has made new inhibitor chemotypes more pressing. Adopting a structure-based approach, we docked 1.2 billion non-covalent lead-like molecules and a new library of 6.5 million electrophiles against the enzyme structure. From these, 29 non-covalent and 11 covalent inhibitors were identified in 37 series, the most potent having an IC50 of 29 and 20 μM, respectively. Several series were optimized, resulting in low micromolar inhibitors. Subsequent crystallography confirmed the docking predicted binding modes and may template further optimization. While the new chemotypes may aid further optimization of MPro inhibitors for SARS-CoV-2, the modest success rate also reveals weaknesses in our approach for challenging targets like MPro versus other targets where it has been more successful, and versus other structure-based techniques against MPro itself.
Project description:SARS-CoV-2, or severe acute respiratory syndrome coronavirus 2, represents a new strain of Coronaviridae. In the closing 2019 to early 2020 months, the virus caused a global pandemic of COVID-19 disease. We performed a virtual screening study in order to identify potential inhibitors of the SARS-CoV-2 main viral protease (3CLpro or Mpro). For this purpose, we developed a novel approach using ensemble docking high-throughput virtual screening directly coupled with subsequent Linear Interaction Energy (LIE) calculations to maximize the conformational space sampling and to assess the binding affinity of identified inhibitors. A large database of small commercial compounds was prepared, and top-scoring hits were identified with two compounds singled out, namely 1-[(R)-2-(1,3-benzimidazol-2-yl)-1-pyrrolidinyl]-2-(4-methyl-1,4-diazepan-1-yl)-1-ethanone and [({(S)-1-[(1H-indol-2-yl)methyl]-3-pyrrolidinyl}methyl)amino](5-methyl-2H-pyrazol-3-yl)formaldehyde. Moreover, we obtained a favorable binding free energy of the identified compounds, and using contact analysis we confirmed their stable binding modes in the 3CLpro active site. These compounds will facilitate further 3CLpro inhibitor design.
Project description:Background: Severe acute respiratory syndrome coronavirus (SARS-CoVs) have emerged as a global health threat, which had caused a high rate of mortality. There is an urgent need to find effective drugs against these viruses. Objective: This study aims to predict the activity of unsymmetrical aromatic disulfides by constructing a QSAR model, and to design new compounds according to the structural and physicochemical attributes responsible for higher activity towards SARS-CoVs main protease. Methods: All molecules were constructed in ChemOffice software and molecular descriptors were calculated by CODESSA software. A regression-based linear heuristic method was established by changing descriptors datasets and calculating predicted IC50 values of compounds. Then, some new compounds were designed according to molecular descriptors from the heuristic method model. The compounds with predicted values smaller than a set point were constantly screened out. Finally, the properties analysis and molecular docking were conducted to further understand the structure-activity relationships of these finalized compounds. Results: The heuristic method explored the various descriptors responsible for bioactivity and gained the best linear model with R2 0.87. The success of the model fully passed the testing set validation, proving that the model has both high statistical significance and excellent predictive ability. A total of 5 compounds with ideal predicted IC50 were found from the 96 newly designed derivatives and their properties analyze was carried out. Molecular docking experiments were conducted for the optimal compound 31a, which has the best compound activity with good target protein binding capability. Conclusion: The heuristic method was quite reliable for predicting IC50 values of unsymmetrical aromatic disulfides. The present research provides meaningful guidance for further exploration of the highly active inhibitors for SARS-CoVs.
Project description:Emerging SARS-CoV-2 variants continue to threaten the effectiveness of COVID-19 vaccines, and small-molecule antivirals can provide an important therapeutic treatment option. The viral main protease (Mpro) is critical for virus replication and thus is considered an attractive drug target. We performed the design and characterization of three covalent hybrid inhibitors BBH-1, BBH-2 and NBH-2 created by splicing components of hepatitis C protease inhibitors boceprevir and narlaprevir, and known SARS-CoV-1 protease inhibitors. A joint X-ray/neutron structure of the Mpro/BBH-1 complex demonstrates that a Cys145 thiolate reaction with the inhibitor's keto-warhead creates a negatively charged oxyanion. Protonation states of the ionizable residues in the Mpro active site adapt to the inhibitor, which appears to be an intrinsic property of Mpro. Structural comparisons of the hybrid inhibitors with PF-07321332 reveal unconventional F···O interactions of PF-07321332 with Mpro which may explain its more favorable enthalpy of binding. BBH-1, BBH-2 and NBH-2 exhibit comparable antiviral properties in vitro relative to PF-07321332, making them good candidates for further design of improved antivirals.
Project description:The rapid global emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused serious health problems, highlighting the urgent need for antiviral drugs. The viral main protease (Mpro) plays an important role in viral replication and thus remains the target of choice for the prevention or treatment of several viral diseases due to high sequence and structural conservation. Prolonged use of viral protease inhibitors can lead to the development of mutants resistant to those inhibitors and to many of the available antiviral drugs. Here, we used feline infectious peritonitis virus (FIPV) as a model to investigate its development of resistance under pressure from the Mpro inhibitor GC376. Passage of wild-type (WT) FIPV in the presence of GC376 selected for a mutation in the nsp12 region where Mpro cleaves the substrate between nsp12 and nsp13. This mutation confers up to 3-fold resistance to GC376 and nirmatrelvir, as determined by EC50 assay. In vitro biochemical and cellular experiments confirmed that FIPV adapts to the stress of GC376 by mutating the nsp12 and nsp13 hydrolysis site to facilitate cleavage by Mpro and release to mediate replication and transcription. Finally, we demonstrate that GC376 cannot treat FIP-resistant mutants that cause FIP in animals. Taken together, these results suggest that Mpro affects the replication of coronaviruses (CoVs) and the drug resistance to GC376 by regulating the amount of RdRp from a distant site. These findings provide further support for the use of an antiviral drug combination as a broad-spectrum therapy to protect against contemporary and emerging CoVs. IMPORTANCE CoVs cause serious human infections, and antiviral drugs are currently approved to treat these infections. The development of protease-targeting therapeutics for CoV infection is hindered by resistance mutations. Therefore, we should pay attention to its resistance to antiviral drugs. Here, we identified possible mutations that lead to relapse after clinical treatment of FIP. One amino acid substitution in the nsp12 polymerase at the Mpro cleavage site provided low-level resistance to GC376 after selection exposure to the GC376 parental nucleoside. Resistance mutations enhanced FIPV viral fitness in vitro and attenuated the therapeutic effect of GC376 in an animal model of FIPV infection. Our research explains the evolutionary characteristics of coronaviruses under antiviral drugs, which is helpful for a more comprehensive understanding of the molecular basis of virus resistance and provides important basic data for the effective prevention and control of CoVs.
Project description:COVID-19 is a highly infectious disease caused by SARS-CoV-2. First reported in December 2019, it rapidly escalated into a global pandemic, resulting in over 6.3 million fatalities by July 4, 2022. The first oral coronavirus main protease inhibitor, nirmatrelvir, was granted Emergency Use Authorization by the U.S. FDA in December 2021. It is a tripeptide incorporated with a C-terminal nitrile designed to bind and form a covalent attachment to the SARS-CoV-2 main protease. Shortly after nirmatrelvir's approval, Enanta Pharmaceuticals' peptidomimetic SARS-CoV-2 main protease inhibitor entered clinical trials in February 2022. This patent highlight reports key structures of di- and tripeptide inhibitors described in Enanta Pharmaceuticals' patent WO 2022/020242 A1.
Project description:The current COVID-19 global pandemic caused by SARS-CoV-2 has claimed more than 6 million lives since its emergence in December 2019. The first oral coronavirus main protease inhibitor, nirmatrelvir, was granted Emergency Use Authorization by the U.S. FDA in December 2021, with a twice-daily dosing regimen in combination with ritonavir. In March 2022, Shionogi & Co. announced their single-agent, once-daily oral SARS-CoV-2 main protease inhibitor, ensitrelvir, was granted approval for global phase 3 clinical trials. Unlike nirmatrelvir, ensitrelvir is a nonpeptidic, noncovalent, small molecule. This Patent Highlight describes key structures and their inhibitory activities in Shionogi & Co.'s and Hokkaido University's patent WO 2022/138987 A1.
Project description:The COVID-19 pandemic highlights the ongoing risk of zoonotic transmission of coronaviruses to global health. To prepare for future pandemics, it is essential to develop effective antivirals targeting a broad range of coronaviruses. Targeting the essential and clinically validated coronavirus main protease (Mpro), we constructed a structurally diverse Mpro panel by clustering all known coronavirus sequences by Mpro active site sequence similarity. Through screening, we identified a potent covalent inhibitor that engaged the catalytic cysteine of SARS-CoV-2 Mpro and used structure-based medicinal chemistry to develop compounds in the pyrazolopyrimidine sulfone series that exhibit submicromolar activity against multiple Mpro homologues. Additionally, we solved the first X-ray cocrystal structure of Mpro from the human-infecting OC43 coronavirus, providing insights into potency differences among compound-target pairs. Overall, the chemical compounds described in this study serve as starting points for the development of antivirals with broad-spectrum activity, enhancing our preparedness for emerging human-infecting coronaviruses.