Ontology highlight
ABSTRACT:
SUBMITTER: Liu S
PROVIDER: S-EPMC8547790 | biostudies-literature | 2022 Mar
REPOSITORIES: biostudies-literature
Liu Shuo S Han Jing J Puyal Estela Laporta EL Kontaxis Spyridon S Sun Shaoxiong S Locatelli Patrick P Dineley Judith J Pokorny Florian B FB Costa Gloria Dalla GD Leocani Letizia L Guerrero Ana Isabel AI Nos Carlos C Zabalza Ana A Sørensen Per Soelberg PS Buron Mathias M Magyari Melinda M Ranjan Yatharth Y Rashid Zulqarnain Z Conde Pauline P Stewart Callum C Folarin Amos A AA Dobson Richard Jb RJ Bailón Raquel R Vairavan Srinivasan S Cummins Nicholas N Narayan Vaibhav A VA Hotopf Matthew M Comi Giancarlo G Schuller Björn B Consortium Radar-Cns RC
Pattern recognition 20211026
This study proposes a contrastive convolutional auto-encoder (contrastive CAE), a combined architecture of an auto-encoder and contrastive loss, to identify individuals with suspected COVID-19 infection using heart-rate data from participants with multiple sclerosis (MS) in the ongoing RADAR-CNS mHealth research project. Heart-rate data was remotely collected using a Fitbit wristband. COVID-19 infection was either confirmed through a positive swab test, or inferred through a self-reported set of ...[more]