Project description:We used jet-cooled broadband rotational spectroscopy to explore the balance between π-stacking and hydrogen-bonding interactions in the self-aggregation of thiophenol. Two different isomers were detected for the thiophenol dimer, revealing dispersion-controlled π-stacked structures anchored by a long S-H···S sulfur hydrogen bond. The weak intermolecular forces allow for noticeable internal dynamics in the dimers, as tunneling splittings are observed for the global minimum. The large-amplitude motion is ascribed to a concerted inversion motion between the two rings, exchanging the roles of the proton donor and acceptor in the thiol groups. The determined torsional barrier of B2 = 250.3 cm-1 is consistent with theoretical predictions (290-502 cm-1) and the monomer barrier of 277.1(3) cm-1. For the thiophenol trimer, a symmetric top structure was assigned in the spectrum. The results highlight the relevance of substituent effects to modulate π-stacking geometries and the role of the sulfur-centered hydrogen bonds.
Project description:Competition and cooperation of charge-assisted anion-π interactions and hydrogen bonding were explored in the solid state and in solutions of 1-ethyl-4-carbomethoxypyridinium iodide, the compound utilized by Kosower to calculate solvent polarity Z-indices. X-ray structural analysis of this salt revealed multiple short contacts of iodide anions with hydrogen atoms and aromatic rings of pyridinium cations. Geometric characteristics, quantum theory of atoms in molecules (QTAIM), and noncovalent interaction (NCI) analysis of these contacts indicated comparable interaction energies of the anion-π and hydrogen bonding between iodide and pyridinium cation. 1H NMR (indicating the presence of the hydrogen-bonded complexes) and UV-vis measurements (which were consistent with the formation of anion-π associations) pointed out that both these supramolecular interactions also coexist in solutions. The comparable interaction energies (ΔE) of these modes were confirmed by the DFT computations. Also, while the variations of ΔE with the dielectric constant of the solvents for the complexes of iodide with the neutral π-acceptors were related to the increase of the effective radii of hydrogen- or anion-π bonded iodides, the changes in ΔE for the complexes with pyridinium followed interaction energies between two unit charges. However, the distinction of the bonding in hydrogen-bonded and anion-π complexes of iodide with pyridinium led to a switch of their relative energies with an increase of the polarity of the medium.
Project description:The concept of a double-bonded pancake bonding mechanism is introduced to explain the extremely short ?-? stacking contacts in dimers of dithiatriazines. While ordinary single pancake bonds occur between radicals and already display significantly shorter interatomic distances in comparison to van der Waals (vdW) contacts, the double-bonded pancake dimer is based on diradicaloid or antiaromatic molecules and exhibits even shorter and stronger intermolecular bonds that breach into the range of extremely stretched single bonds in terms of bond distances and binding energies. These properties give rise to promising possibilities in the design of new materials with high electrical conductivity and for the field of spintronics. The analysis of the double pancake bond is based on cutting edge electron correlation theory combining multireference (nondynamical) effects and dispersion (dynamical) contributions in a balanced way providing accurate interaction energies and distributions of unpaired spins. It is also shown that the present examples do not stand isolated but that similar mechanisms operate in several analogous nonradical molecular systems to form double-bonded ?-stacking pancake dimers. We report on the amazing properties of a new type of stacking interaction mechanism between ? conjugated molecules in the form of a "double pancake bond" which breaks the record for short intermolecular distances and provides formidable strength for some ?-? stacking interactions.
Project description:This study provides a systematic investigation of intermolecular interactions in homodimer of acenes using density functional theory (DFT). Focusing on the +1-charged dimers-frequently encountered in crystal structures-our analysis explores the influence of this charge, which introduces an unpaired electron, significantly affecting electronic properties. The interaction energy of +1-charged acene dimers is significantly larger compared to their neutral counterparts, attributed to the emergence of "pancake bonding″: a partially covalent interaction marked by intermolecular orbital overlap. This bonding mechanism contributes to the enhanced stability of charged acene dimers. Our findings indicate that the interplay between pancake bonding and van der Waals interactions influence the preferred orientations of monomers within these dimers. Transition state modeling reveals that orientational changes between dimer configurations do not completely break pancake bonds.
Project description:Aromatic π-stacking is a weakly attractive, noncovalent interaction often found in biological macromolecules and synthetic supramolecular chemistry. The weak nondirectional nature of π-stacking can present challenges in the design of materials owing to their weak, nondirectional nature. However, when aromatic π-systems contain an unpaired electron, stronger attraction involving face-to-face π-orbital overlap is possible, resulting in covalent so-called "pancake" bonds. Two-electron, multicenter single pancake bonds are well known, whereas four-electron double pancake bonds are rare. Higher-order pancake bonds have been predicted, but experimental systems are unknown. Here, we show that six-electron triple pancake bonds can be synthesized by a 3-fold reduction of hexaazatrinaphthylene (HAN) and subsequent stacking of the [HAN]3- triradicals. Our analysis reveals a multicenter covalent triple pancake bond consisting of a σ-orbital and two equivalent π-orbitals. An electrostatic stabilizing role is established for the tetravalent thorium and uranium ions in these systems. We also show that the electronic absorption spectrum of the triple pancake bonds closely matches computational predictions, providing experimental verification of these unique interactions. The discovery of conductivity in thin films of triply bonded π-dimers presents new opportunities for the discovery of single-component molecular conductors and other spin-based molecular materials.
Project description:The cis- and trans-isomers of 6-(3-(3,4-dichlorophenyl)-1,2,4-oxadiazol-5-yl)cyclohex-3-ene-1-carboxylic acid (cis-A and trans-A) were obtained by the reaction of 3,4-dichloro-N'-hydroxybenzimidamide and cis-1,2,3,6-tetrahydrophthalic anhydride. Cocrystals of cis-A with appropriate solvents (cis-A‧½(1,2-DCE), cis-A‧½(1,2-DBE), and cis-A‧½C6H14) were grown from 1,2-dichloroethane (1,2-DCE), 1,2-dibromoethane (1,2-DBE), and a n-hexane/CHCl3 mixture and then characterized by X-ray crystallography. In their structures, cis-A is self-assembled to give a hybrid 2D supramolecular organic framework (SOF) formed by the cooperative action of O-H⋯O hydrogen bonding, Cl⋯O halogen bonding, and π⋯π stacking. The self-assembled cis-A divides the space between the 2D SOF layers into infinite hollow tunnels incorporating solvent molecules. The energy contribution of each noncovalent interaction to the occurrence of the 2D SOF was verified by several theoretical approaches, including MEP and combined QTAIM and NCIplot analyses. The consideration of the theoretical data proved that hydrogen bonding (approx. -15.2 kcal/mol) is the most important interaction, followed by π⋯π stacking (approx. -11.1 kcal/mol); meanwhile, the contribution of halogen bonding (approx. -3.6 kcal/mol) is the smallest among these interactions. The structure of the isomeric compound trans-A does not exhibit a 2D SOF architecture. It is assembled by the combined action of hydrogen bonding and π⋯π stacking, without the involvement of halogen bonds. A comparison of the cis-A structures with that of trans-A indicated that halogen bonding, although it has the lowest energy in cis-A-based cocrystals, plays a significant role in the crystal design of the hybrid 2D SOF. The majority of the reported porous halogen-bonded organic frameworks were assembled via iodine and bromine-based contacts, while chlorine-based systems-which, in our case, are structure-directing-were unknown before this study.
Project description:Mixing the liquids hexafluorobenzene (1) and 1,3,5-trimethylbenzene (mesitylene, 2) results in a crystalline solid with a melting point of 34 °C. The solid consists of alternating π-π stacked pillars of both aromatics. This simple experiment can be used to visually demonstrate the existence and the effect of noncovalent intermolecular π-π stacking interactions. Both benzene derivatives are relatively benign and widely available, and the experiment can be performed within minutes for less than $15 when done on a 22 mL scale (total volume). The demonstration is very robust, as 1:2 mixtures in volume ratios between 2/3 and 3/2 all give a visually similar result (molar ratios of 1.8-0.8). Substituting 2 with the liquid aromatics o-xylene, p-xylene, and aniline also resulted in the formation of a crystalline solid, while using many other liquid aromatics did not.
Project description:The supramolecular chemistry of coordination compounds has become an important research domain of modern inorganic chemistry. Herein, six isostructural group IIB coordination compounds containing a 2-{[(2-methoxyphenyl)imino]methyl}phenol ligand, namely dichloridobis(2-{(E)-[(2-methoxyphenyl)azaniumylidene]methyl}phenolato-κO)zinc(II), [ZnCl2(C28H26N2O4)], 1, diiodidobis(2-{(E)-[(2-methoxyphenyl)azaniumylidene]methyl}phenolato-κO)zinc(II), [ZnI2(C28H26N2O4)], 2, dibromidobis(2-{(E)-[(2-methoxyphenyl)azaniumylidene]methyl}phenolato-κO)cadmium(II), [CdBr2(C28H26N2O4)], 3, diiodidobis(2-{(E)-[(2-methoxyphenyl)azaniumylidene]methyl}phenolato-κO)cadmium(II), [CdI2(C28H26N2O4)], 4, dichloridobis(2-{(E)-[(2-methoxyphenyl)azaniumylidene]methyl}phenolato-κO)mercury(II), [HgCl2(C28H26N2O4)], 5, and diiodidobis(2-{(E)-[(2-methoxyphenyl)azaniumylidene]methyl}phenolato-κO)mercury(II), [HgI2(C28H26N2O4)], 6, were synthesized and characterized by X-ray crystallography and spectroscopic techniques. All six compounds exhibit an infinite one-dimensional ladder in the solid state governed by the formation of hydrogen-bonding and π-π stacking interactions. The crystal structures of these compounds were studied using geometrical and Hirshfeld surface analyses. They have also been studied using M06-2X/def2-TZVP calculations and Bader's theory of `atoms in molecules'. The energies associated with the interactions, including the contribution of the different forces, have been evaluated. In general, the π-π stacking interactions are stronger than those reported for conventional π-π complexes, which is attributed to the influence of the metal coordination, which is stronger for Zn than either Cd or Hg. The results reported herein might be useful for understanding the solid-state architecture of metal-containing materials that contain MIIX2 subunits and aromatic organic ligands.
Project description:Interactions between two aromatic rings with various substituents in a near-sandwich configuration have been quantitatively studied by using the triptycene derived molecular models. This model system allows a stacking arrangement of two arenes to assume a near-perfect face-to-face configuration in its ground state conformation. Comparing to our previous study of the parallel displaced configuration, repulsive interactions are predominant for most arenes currently studied. However, if one arene is strongly electron deficient (Ar2=pentafluorobenzoate), attractive interactions were observed regardless of the character of the other arene (Ar1). For stacking interactions between Me2NC6H4 and C6F5CO groups, a DeltaH of -1.84+/-0.2 kcal/mol and a DeltaS of -2.9+/-0.8 cal/(mol.K) were determined. The general trend in the attractive stacking interaction toward a pentafluorobenzoate is Me2NC6H4>Me3C6H2>Me2C6H3>MeC6H4>MeOC6H4>C6H5>O2NC6H4. The observed trend is consistent with a donor-acceptor relationship and the acceptor is a C6F5CO group.