Project description:BackgroundRight ventricular failure is an underrecognized consequence of COVID-19 pneumonia. Those with severe disease are treated with extracorporeal membrane oxygenation (ECMO) but with poor outcomes. Concomitant right ventricular assist device (RVAD) may be beneficial.MethodsA retrospective analysis of intensive care unit patients admitted with COVID-19 ARDS (Acute Respiratory Distress Syndrome) was performed. Nonintubated patients, those with acute kidney injury, and age > 75 were excluded. Patients who underwent RVAD/ECMO support were compared with those managed via invasive mechanical ventilation (IMV) alone. The primary outcome was in-hospital mortality. Secondary outcomes included 30-d mortality, acute kidney injury, length of ICU stay, and duration of mechanical ventilation.ResultsA total of 145 patients were admitted to the ICU with COVID-19. Thirty-nine patients met inclusion criteria. Of these, 21 received IMV, and 18 received RVAD/ECMO. In-hospital (52.4 versus 11.1%, P = 0.008) and 30-d mortality (42.9 versus 5.6%, P= 0.011) were significantly lower in patients treated with RVAD/ECMO. Acute kidney injury occurred in 15 (71.4%) patients in the IMV group and zero RVAD/ECMO patients (P< 0.001). ICU (11.5 versus 21 d, P= 0.067) and hospital (14 versus 25.5 d, P = 0.054) length of stay were not significantly different. There were no RVAD/ECMO device complications. The duration of mechanical ventilation was not significantly different (10 versus 5 d, P = 0.44).ConclusionsRVAD support at the time of ECMO initiation resulted in the no secondary end-organ damage and higher in-hospital and 30-d survival versus IMV in specially selected patients with severe COVID-19 ARDS. Management of severe COVID-19 ARDS should prioritize right ventricular support.
Project description:We present a patient with pulmonary arterial hypertension requiring venovenous-extracorporeal membrane oxygenation for acute respiratory distress syndrome. Refractory hypoxemia secondary to right-to-left interatrial shunting via a patent foramen ovale was discovered. Right heart catheterization with invasive occlusion test heralded worsening right heart failure so closure was aborted. (Level of Difficulty: Intermediate.).
Project description:Left ventricular (LV) dilatation is commonly seen with LV failure and is often aggravated during venoarterial extracorporeal membrane oxygenation (VA ECMO). In this context, the intricate interaction between left and right heart function is considered to be of pivotal importance, yet mechanistically not well understood. We hypothesize that a preserved or enhanced right heart contractility causes increased LV loading both with and without VA ECMO. A closed-loop in-silico simulation model containing the cardiac chambers, the pericardium, septal interactions, and the pulmonary and systemic vascular systems with an option to connect a simulated VA ECMO circuit was developed. Right ventricular contractility was modified during simulation of severe LV failure with and without VA ECMO. Left atrial pressures increased from 14.0 to 23.8 mm Hg without VA ECMO and from 18.4 to 27.0 mm Hg under VA ECMO support when right heart contractility was increased between end-systolic elastance 0.1 and 1.0 mm Hg/ml. Left-sided end-diastolic volumes increased from 125 to 169 ml without VA ECMO and from 150 to 180 ml with VA ECMO. Simulations demonstrate that increased diastolic loading of the LV may be driven by increased right ventricular contractility and that left atrial pressures cannot be interpreted as a reflection of the degree of LV dysfunction and overload without considering right ventricular function. Our study illustrates that modelling and computer simulation are important tools to unravel complex cardiovascular mechanisms underlying the right-left heart interdependency both with and without mechanical circulatory support.
Project description:Extracorporeal membrane oxygenation following cardiac surgery safeguards end-organ oxygenation but unfavorably alters cardiac hemodynamics. Along with the detrimental effects of cardiac surgery to the right heart, this might impact outcome, particularly in patients with preexisting right ventricular (RV) dysfunction. We sought to determine the prognostic impact of RV function and to improve established risk-prediction models in this vulnerable patient cohort. Of 240 patients undergoing extracorporeal membrane oxygenation support following cardiac surgery, 111 had echocardiographic examinations at our institution before implantation of extracorporeal membrane oxygenation and were thus included. Median age was 67 years (interquartile range 60-74), and 74 patients were male. During a median follow-up of 27 months (interquartile range 16-63), 75 patients died. Fifty-one patients died within 30 days, 75 during long-term follow-up (median follow-up 27 months, minimum 5 months, maximum 125 months). Metrics of RV function were the strongest predictors of outcome, even stronger than left ventricular function (P<0.001 for receiver operating characteristics comparisons). Specifically, RV free-wall strain was a powerful predictor univariately and after adjustment for clinical variables, Simplified Acute Physiology Score-3, tricuspid regurgitation, surgery type and duration with adjusted hazard ratios of 0.41 (95%CI 0.24-0.68; P=0.001) for 30-day mortality and 0.48 (95%CI 0.33-0.71; P<0.001) for long-term mortality for a 1-SD (SD=-6%) change in RV free-wall strain. Combined assessment of the additive EuroSCORE and RV free-wall strain improved risk classification by a net reclassification improvement of 57% for 30-day mortality (P=0.01) and 56% for long-term mortality (P=0.02) compared with the additive EuroSCORE alone. RV function is strongly linked to mortality, even after adjustment for baseline variables and clinical risk scores. RV performance improves established risk prediction models for short- and long-term mortality.
Project description:Mechanical circulatory support devices are used to support the heart in cardiogenic shock. We present a case of demonstrating the feasible use of left ventricular assistive device with reverse configuration to support severe right ventricular failure in a patient with recent tricuspid annuloplasty ring.