Unknown

Dataset Information

0

Theoretical study of cellulose II nanocrystals with different exposed facets.


ABSTRACT: Derived from the most abundant natural polymer, cellulose nanocrystal materials have attracted attention in recent decades due to their chemical and mechanical properties. However, still unclear is the influence of different exposed facets of the cellulose nanocrystals on the physicochemical properties. Herein, we first designed cellulose II nanocrystals with different exposed facets, the hydroxymethyl conformations distribution, hydrogen bond (HB) analysis, as well as the relative structural stability of these models (including crystal facets {A, B, O} and Type-A models vary in size) are theoretically investigated. The results reveal that the HB network of terminal anhydroglucose depends on the adjacent chain's contact sites in nanocrystals exposed with different facets. Compared to nanocrystals exposed with inclined facet, these exposed with flat facet tend to be the most stable. Therefore, the strategy of tuning exposed crystal facets will guide the design of novel cellulose nanocrystals with various physicochemical properties.

SUBMITTER: Leng C 

PROVIDER: S-EPMC8576008 | biostudies-literature | 2021 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Theoretical study of cellulose II nanocrystals with different exposed facets.

Leng Can C   Li Kenli K   Tian Zean Z   Si Yubing Y   Huang Huang H   Li Junfeng J   Liu Jie J   Huang Wei-Qing WQ   Li Keqin K  

Scientific reports 20211108 1


Derived from the most abundant natural polymer, cellulose nanocrystal materials have attracted attention in recent decades due to their chemical and mechanical properties. However, still unclear is the influence of different exposed facets of the cellulose nanocrystals on the physicochemical properties. Herein, we first designed cellulose II nanocrystals with different exposed facets, the hydroxymethyl conformations distribution, hydrogen bond (HB) analysis, as well as the relative structural st  ...[more]

Similar Datasets

| S-EPMC10966739 | biostudies-literature
| S-EPMC5705708 | biostudies-literature
| S-EPMC9502823 | biostudies-literature
2025-02-16 | GSE289408 | GEO
| S-EPMC5028751 | biostudies-literature
2025-05-08 | GSE296395 | GEO
| S-EPMC5385818 | biostudies-literature
| S-EPMC9025455 | biostudies-literature
| S-EPMC9472801 | biostudies-literature
| S-EPMC3659235 | biostudies-literature