Unknown

Dataset Information

0

Spatiotemporal prediction of COVID-19 cases using inter- and intra-county proxies of human interactions.


ABSTRACT: Measurements of human interaction through proxies such as social connectedness or movement patterns have proved useful for predictive modeling of COVID-19, which is a challenging task, especially at high spatial resolutions. In this study, we develop a Spatiotemporal autoregressive model to predict county-level new cases of COVID-19 in the coterminous US using spatiotemporal lags of infection rates, human interactions, human mobility, and socioeconomic composition of counties as predictive features. We capture human interactions through 1) Facebook- and 2) cell phone-derived measures of connectivity and human mobility, and use them in two separate models for predicting county-level new cases of COVID-19. We evaluate the model on 14 forecast dates between 2020/10/25 and 2021/01/24 over one- to four-week prediction horizons. Comparing our predictions with a Baseline model developed by the COVID-19 Forecast Hub indicates an average 6.46% improvement in prediction Mean Absolute Errors (MAE) over the two-week prediction horizon up to 20.22% improvement in the four-week prediction horizon, pointing to the strong predictive power of our model in the longer prediction horizons.

SUBMITTER: Vahedi B 

PROVIDER: S-EPMC8576047 | biostudies-literature | 2021 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Spatiotemporal prediction of COVID-19 cases using inter- and intra-county proxies of human interactions.

Vahedi Behzad B   Karimzadeh Morteza M   Zoraghein Hamidreza H  

Nature communications 20211108 1


Measurements of human interaction through proxies such as social connectedness or movement patterns have proved useful for predictive modeling of COVID-19, which is a challenging task, especially at high spatial resolutions. In this study, we develop a Spatiotemporal autoregressive model to predict county-level new cases of COVID-19 in the coterminous US using spatiotemporal lags of infection rates, human interactions, human mobility, and socioeconomic composition of counties as predictive featu  ...[more]

Similar Datasets

| S-EPMC8275764 | biostudies-literature
| S-EPMC10282074 | biostudies-literature
| S-EPMC7775067 | biostudies-literature
| S-EPMC7832151 | biostudies-literature
| S-EPMC10226446 | biostudies-literature
| S-EPMC9301577 | biostudies-literature
| S-EPMC11220726 | biostudies-literature
| S-EPMC7767300 | biostudies-literature
| S-EPMC7319758 | biostudies-literature
| S-EPMC7940469 | biostudies-literature