Unknown

Dataset Information

0

Plating human iPSC lines on micropatterned substrates reveals role for ITGB1 nsSNV in endoderm formation.


ABSTRACT: Quantitative analysis of human induced pluripotent stem cell (iPSC) lines from healthy donors is a powerful tool for uncovering the relationship between genetic variants and cellular behavior. We previously identified rare, deleterious non-synonymous single nucleotide variants (nsSNVs) in cell adhesion genes that are associated with outlier iPSC phenotypes in the pluripotent state. Here, we generated micropatterned colonies of iPSCs to test whether nsSNVs influence patterning of radially ordered germ layers. Using a custom-built image analysis pipeline, we quantified the differentiation phenotypes of 13 iPSC lines that harbor nsSNVs in genes related to cell adhesion or germ layer development. All iPSC lines differentiated into the three germ layers; however, there was donor-specific variation in germ layer patterning. We identified one line that presented an outlier phenotype of expanded endodermal differentiation, which was associated with a nsSNV in ITGB1. Our study establishes a platform for investigating the impact of nsSNVs on differentiation.

SUBMITTER: Vickers A 

PROVIDER: S-EPMC8581167 | biostudies-literature | 2021 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Plating human iPSC lines on micropatterned substrates reveals role for ITGB1 nsSNV in endoderm formation.

Vickers Alice A   Tewary Mukul M   Laddach Anna A   Poletti Martina M   Salameti Vasiliki V   Fraternali Franca F   Danovi Davide D   Watt Fiona M FM  

Stem cell reports 20211021 11


Quantitative analysis of human induced pluripotent stem cell (iPSC) lines from healthy donors is a powerful tool for uncovering the relationship between genetic variants and cellular behavior. We previously identified rare, deleterious non-synonymous single nucleotide variants (nsSNVs) in cell adhesion genes that are associated with outlier iPSC phenotypes in the pluripotent state. Here, we generated micropatterned colonies of iPSCs to test whether nsSNVs influence patterning of radially ordered  ...[more]

Similar Datasets

| S-BSMS7 | biostudies-other
2010-12-25 | E-GEOD-25557 | biostudies-arrayexpress
2010-12-25 | GSE25557 | GEO
| S-EPMC11214149 | biostudies-literature
| S-EPMC7174307 | biostudies-literature
| S-EPMC3809896 | biostudies-literature
| S-EPMC9461288 | biostudies-literature
| S-EPMC9354750 | biostudies-literature
| S-EPMC3173981 | biostudies-literature
| S-EPMC8657774 | biostudies-literature