Ontology highlight
ABSTRACT: Purpose
Functional magnetic resonance imaging (fMRI) has promise for understanding neural mechanisms of neurogenic speech and voice disorders. However, performing vocal tasks within the fMRI environment may not always be analogous to performance outside of the scanner. Using a mock MRI scanner, this study examines the effects of a simulated scanning environment on vowel intensity in individuals with Parkinson's disease (PD) and hypophonia and older healthy control (OHC) participants.Method
Thirty participants (15 PD, 15 OHC) performed a sustained /ɑ/ vowel production task in three conditions: 1) Upright, 2) Mock Scanner + No Noise, and 3) Mock Scanner + MRI noise. We used a linear mixed-effects (multi-level) model to evaluate the contributions of group and recording environment to vowel intensity. A second linear mixed-effects model was also used to evaluate the contributions of PD medication state (On vs. Off) to voice intensity.Results
Vowel intensity was significantly lower for PD compared to the OHC group. The intensity of vowels produced in the Upright condition was significantly lower compared to the Mock Scanner + No Noise condition, while vowel intensity in the Mock Scanner + MRI Noise condition was significantly higher compared to the Mock Scanner + No Noise condition. A group by condition interaction also indicated that the addition of scanner noise had a greater impact on the PD group. A second analysis conducted within the PD group showed no effects of medication state on vowel intensity.Conclusion
Our findings demonstrate that performance on voice production tasks is altered for PD and OHC groups when translated into the fMRI environment, even in the absence of acoustic scanner noise. For fMRI studies of voice in PD hypophonia, careful thought should be given to how the presence of acoustic noise may differentially affect PD and OHC, for both group and task comparisons.
SUBMITTER: Manes JL
PROVIDER: S-EPMC8627501 | biostudies-literature | 2021 Nov-Dec
REPOSITORIES: biostudies-literature
Journal of communication disorders 20210831
<h4>Purpose</h4>Functional magnetic resonance imaging (fMRI) has promise for understanding neural mechanisms of neurogenic speech and voice disorders. However, performing vocal tasks within the fMRI environment may not always be analogous to performance outside of the scanner. Using a mock MRI scanner, this study examines the effects of a simulated scanning environment on vowel intensity in individuals with Parkinson's disease (PD) and hypophonia and older healthy control (OHC) participants.<h4> ...[more]