Unknown

Dataset Information

0

Repositioning of Fungal-based Peptides as Modulators of Angiotensin-converting Enzyme-related Carboxypeptidase, SARS-coronavirus HR2 Domain, and Coronavirus Disease 2019 Main Protease.


ABSTRACT:

Background and objectives

Angiotensin-converting enzyme-related carboxypeptidase, SARS-Coronavirus HR2 Domain, and COVID-19 main protease are essential for the cellular entry and replication of coronavirus in the host. This study investigated the putative inhibitory action of peptides form medicinal mushrooms, namely Pseudoplectania nigrella, Russula paludosa, and Clitocybe sinopica, towards selected proteins through computational studies.

Materials and methods

The respective physicochemical properties of selected peptides were predicted using ProtParam tool, while the binding modes and binding free energy of selected peptides toward proteins were computed through HawkDock server. The structural flexibility and stability of docked protein-peptide complexes were assessed through iMODS server.

Results

The peptides showed an optimum binding afinity with the molecular targets; plectasin from P. nigrella showed the highest binding free energy compared to peptides from R. paludosa and C. sinopica. Besides, molecular dynamic simulations showed all fungal-based peptides could influence the flexibility and stability of selected proteins.

Conclusion

The study revealed fungal-based peptides could be explored as functional modulators of essential proteins that are involved in the cellular entry of coronavirus.

SUBMITTER: Oso BJ 

PROVIDER: S-EPMC8629419 | biostudies-literature | 2021 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Repositioning of Fungal-based Peptides as Modulators of Angiotensin-converting Enzyme-related Carboxypeptidase, SARS-coronavirus HR2 Domain, and Coronavirus Disease 2019 Main Protease.

Oso Babatunde Joseph BJ   Ogidi Clement Olusola CO  

Journal of translational internal medicine 20210928 3


<h4>Background and objectives</h4>Angiotensin-converting enzyme-related carboxypeptidase, SARS-Coronavirus HR2 Domain, and COVID-19 main protease are essential for the cellular entry and replication of coronavirus in the host. This study investigated the putative inhibitory action of peptides form medicinal mushrooms, namely <i>Pseudoplectania nigrella</i>, <i>Russula paludosa</i>, and <i>Clitocybe sinopica</i>, towards selected proteins through computational studies.<h4>Materials and methods</h  ...[more]

Similar Datasets

| S-EPMC9885507 | biostudies-literature
| S-EPMC7129862 | biostudies-literature
| S-EPMC7480804 | biostudies-literature
| S-EPMC10936523 | biostudies-literature
| S-EPMC7176230 | biostudies-literature
| S-EPMC8605841 | biostudies-literature
| S-EPMC8949860 | biostudies-literature
| S-EPMC7095016 | biostudies-literature
| S-EPMC9688389 | biostudies-literature