Unknown

Dataset Information

0

BRCAness, SLFN11, and RB1 loss predict response to topoisomerase I inhibitors in triple-negative breast cancers.


ABSTRACT: Topoisomerase I (TOP1) inhibitors trap TOP1 cleavage complexes resulting in DNA double-strand breaks (DSBs) during replication, which are repaired by homologous recombination (HR). Triple-negative breast cancer (TNBC) could be eligible for TOP1 inhibitors given the considerable proportion of tumors with a defect in HR-mediated repair (BRCAness). The TOP1 inhibitor irinotecan was tested in 40 patient-derived xenografts (PDXs) of TNBC. BRCAness was determined with a single-nucleotide polymorphism (SNP) assay, and expression of Schlafen family member 11 (SLFN11) and retinoblastoma transcriptional corepressor 1 (RB1) was evaluated by real-time polymerase chain reaction (RT-PCR) and immunohistochemistry analyses. In addition, the combination of irinotecan and the ataxia telangiectasia and Rad3-related protein (ATR) inhibitor VE-822 was tested in SLFN11-negative PDXs, and two clinical non-camptothecin TOP1 inhibitors (LMP400 and LMP776) were tested. Thirty-eight percent of the TNBC models responded to irinotecan. BRCAness combined with high SLFN11 expression and RB1 loss identified highly sensitive tumors, consistent with the notion that deficiencies in cell cycle checkpoints and DNA repair result in high sensitivity to TOP1 inhibitors. Treatment by the ATR inhibitor VE-822 increased sensitivity to irinotecan in SLFN11-negative PDXs and abolished irinotecan-induced phosphorylation of checkpoint kinase 1 (CHK1). LMP400 (indotecan) and LMP776 (indimitecan) showed high antitumor activity in BRCA1-mutated or BRCAness-positive PDXs. Last, low SLFN11 expression was associated with poor survival in 250 patients with TNBC treated with anthracycline-based chemotherapy. In conclusion, a substantial proportion of TNBC respond to irinotecan. BRCAness, high SLFN11 expression, and RB1 loss are highly predictive of response to irinotecan and the clinical indenoisoquinoline TOP1 inhibitors.

SUBMITTER: Coussy F 

PROVIDER: S-EPMC8662740 | biostudies-literature | 2020 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

BRCAness, SLFN11, and RB1 loss predict response to topoisomerase I inhibitors in triple-negative breast cancers.

Coussy Florence F   El-Botty Rania R   Château-Joubert Sophie S   Dahmani Ahmed A   Montaudon Elodie E   Leboucher Sophie S   Morisset Ludivine L   Painsec Pierre P   Sourd Laura L   Huguet Léa L   Nemati Fariba F   Servely Jean-Luc JL   Larcher Thibaut T   Vacher Sophie S   Briaux Adrien A   Reyes Cécile C   La Rosa Philippe P   Lucotte Georges G   Popova Tatiana T   Foidart Pierre P   Sounni Nor Eddine NE   Noel Agnès A   Decaudin Didier D   Fuhrmann Laetitia L   Salomon Anne A   Reyal Fabien F   Mueller Christopher C   Ter Brugge Petra P   Jonkers Jos J   Poupon Marie-France MF   Stern Marc-Henri MH   Bièche Ivan I   Pommier Yves Y   Marangoni Elisabetta E  

Science translational medicine 20200201 531


Topoisomerase I (TOP1) inhibitors trap TOP1 cleavage complexes resulting in DNA double-strand breaks (DSBs) during replication, which are repaired by homologous recombination (HR). Triple-negative breast cancer (TNBC) could be eligible for TOP1 inhibitors given the considerable proportion of tumors with a defect in HR-mediated repair (BRCAness). The TOP1 inhibitor irinotecan was tested in 40 patient-derived xenografts (PDXs) of TNBC. BRCAness was determined with a single-nucleotide polymorphism  ...[more]

Similar Datasets

2019-12-28 | GSE142639 | GEO
| PRJNA597843 | ENA
| S-EPMC7226117 | biostudies-literature
| S-EPMC6854488 | biostudies-literature
| S-EPMC7156820 | biostudies-literature
| S-EPMC5589983 | biostudies-literature
| S-EPMC7934920 | biostudies-literature
| S-EPMC10294332 | biostudies-literature
| S-EPMC5096803 | biostudies-literature
| S-EPMC11897054 | biostudies-literature