Project description:Metastatic triple negative breast cancer (TNBC) has an aggressive phenotype with a predilection for visceral organs and brain. Best responses to chemotherapy are predominately in the first line. Recent studies have demonstrated improved progression free survival with the combination of atezolizumab/pembrolizumab and chemotherapy in programmed death-ligand 1 positive metastatic TNBC. However, a recent trial in a similar population showed no benefit for atezoli-zumab and paclitaxel which led to a Food and Drug Administration alert. Two phase III trials (OLYMPIAD and BROCADE3) demonstrated a benefit in progression free survival (PFS) but not overall survival in patients with BRCA-associated metastatic TNBC treated with Olaparib or Talazoparib respectively. For those treated with Talazoparib, the time to deterioration in health related-quality of life was also longer compared to chemotherapy. The BROCADE3 trial demonstrated that the combination of a platinum and veliparib increased PFS in first-line metastatic TNBC but at the cost of increased toxicity. There are no head-to-head comparisons of a poly (adenosine diphosphate-ribose) polymerase inhibitors (PARPi) and platinums. There are unanswered questions regarding the role of PARPi maintenance after platinum therapy as is standard of care in BRCA-associated ovarian cancer. Other areas of therapeutic interest include targeting aberrations in the phosphoinositide 3-kinase pathway, protein kinase B, mammalian target of rapamycin or utilising antibody drug conjugates. This review focusses on recent and emerging therapeutic options in metastatic TNBC. We searched PubMed, clinicaltrials.gov and recent international meetings from American Society of Clinical Oncology, San Antonio Breast Cancer Conference and the European Society of Medical Oncology.
Project description:Low dose computed tomography (LDCT) screening, together with the recent advances in targeted and immunotherapies, have shown to improve non-small cell lung cancer (NSCLC) survival. Furthermore, screening has increased the number of early stage-detected tumors, allowing for surgical resection and multimodality treatments when needed. The need for improved sensitivity and specificity of NSCLC screening has led to increased interest in combining clinical and radiological data with molecular data. The development of biomarkers is poised to refine inclusion criteria for LDCT screening programs. Biomarkers may also be useful to better characterize the risk of indeterminate nodules found in the course of screening or to refine prognosis and help in the management of screening detected tumors. The clinical implications of these biomarkers are still being investigated and whether or not biomarkers will be included in further decision-making algorithms in the context of screening and early lung cancer management still needs to be determined. However, it seems clear that there is much room for improvement even in early stage lung cancer disease-free survival (DFS) rates; thus, biomarkers may be the key to refine risk-stratification and treatment of these patients. Clinicians' capacity to register, integrate, and analyze all the available data in both high risk individuals and early stage NSCLC patients will lead to a better understanding of the disease's mechanisms, and will have a direct impact in diagnosis, treatment, and follow up of these patients. In this review, we aim to summarize all the available data regarding the role of biomarkers in LDCT screening and early stage NSCLC from a multidisciplinary perspective. We have highlighted clinical implications, the need to combine risk stratification, clinical data, radiomics, molecular information and artificial intelligence in order to improve clinical decision-making, especially regarding early diagnostics and adjuvant therapy. We also discuss current and future perspectives for biomarker implementation in routine clinical practice.
Project description:Patients with early-stage non-small-cell lung cancer (NSCLC) are candidates for curative surgery; however, despite multiple advances in lung cancer management, recurrence rates remain high. Adjuvant chemotherapy has been demonstrated to significantly prolong overall survival (OS), but this benefit is modest and there is an urgent need for effective new therapies to provide a cure for more patients. The high efficacy of tyrosine kinase inhibitors (TKIs) against epidermal growth factor receptor-mutated (EGFR) in patients with advanced EGFR-mutated NSCLC has led to the evaluation of these agents in early stages of the disease. Multiple clinical trials have evaluated the safety and efficacy of EGFR TKIs as an adjuvant treatment, in patients with resected EGFR-mutated NSCLC, and shown that they significantly prolong disease-free survival (DFS), but this benefit does not translate to OS. Recently, an interim analysis of the ADAURA trial demonstrated that, surprisingly, osimertinib improved DFS. This led to the study being stopped early, leaving many unanswered questions about its potential effect on OS and its incorporation as a standard adjuvant treatment in this patient subgroup. These targeted agents are also being evaluated in locally-advanced disease, with promising results, although prospective studies with larger sample sizes are needed to confirm these results. In this article, we review the most relevant studies on the role of EGFR TKIs in the management of early-stage EGFR-mutated NSCLC.
Project description:The identification of molecular subtypes of non-small-cell lung cancer has transformed the clinical management of this disease. This is best exemplified by the clinical success of targeting the EGFR or ALK with tyrosine kinase inhibitors in the front-line setting. Our ability to further improve patient outcomes with biomarker-based targeted therapies will depend on a more comprehensive genetic platform that can rationally interrogate the cancer genome of an individual patient. Novel technologies, including multiplex genotyping and next-generation sequencing are rapidly evolving and will soon challenge the oncologist with a wealth of genetic information for each patient. Although there are many barriers to overcome, the integration of these genetic platforms into clinical care has the potential to transform the management of lung cancer through improved molecular categorization, patient stratification, and drug development, thereby, improving clinical outcomes through personalized lung cancer medicine.
Project description:According to the latest statistics from the International Agency for Research on Cancer (IARC), lung cancer is one of the most lethal malignancies in the world, accounting for approximately 18% of all cancer-associated deaths. Yet, even with aggressive interventions for advanced lung cancer, the five-year survival rate remains low, at around 15%. The hedgehog signaling pathway is highly conserved during embryonic development and is involved in tissue homeostasis as well as organ development. However, studies have documented an increasing prevalence of aberrant activation of HH signaling in lung cancer patients, promoting malignant lung cancer progression with poor prognostic outcomes. Inhibitors targeting the HH pathway have been widely used in tumor therapy, however, they still cannot avoid the occurrence of drug resistance. Interestingly, natural products, either alone or in combination with chemotherapy, have greatly improved overall survival outcomes for lung cancer patients by acting on the HH signaling pathway because of its unique and excellent pharmacological properties. In this review, we elucidate on the underlying molecular mechanisms through which the HH pathway promotes malignant biological behaviors in lung cancer, as well as the potential of inhibitors or natural compounds in targeting HH signaling for clinical applications in lung cancer therapy.
Project description:Focusing on the current state of the art, this article (a) describes recent advances in the understanding of the pathogenesis of venous thromboembolism (VTE), (b) discusses current approaches for the prevention, diagnosis and treatment of VTE, (c) outlines the role of aspirin for VTE prevention and treatment, and (d) highlights the unmet needs in VTE management and describes novel approaches to address them.
Project description:ROS1 is a validated therapeutic target in NSCLC. In a phase I study, the multitargeted MET proto-oncogene, receptor tyrosine kinase/anaplastic lymphoma kinase/ROS1 inhibitor crizotinib demonstrated remarkable efficacy in ROS1-rearranged NSCLCs and consequently gained approval by the United States Food and Drug Administration and by the European Medicines Agency in 2016. However, similar to other oncogene-driven lung cancers, ROS1-rearranged lung cancers treated with crizotinib eventually acquire resistance, leading to disease relapse. Novel ROS1 inhibitors and therapeutic strategies are therefore needed. Insights into the mechanisms of resistance to ROS1-directed tyrosine kinase inhibitors are now beginning to emerge and are helping to guide the development of new ROS1 inhibitors. This review discusses the biology and diagnosis of ROS1-rearranged NSCLC, and current and emerging treatment options for this disease. Future challenges in the field are highlighted.
Project description:Cancer is a multistep process resulting in uncontrolled cell division. It results from aberrant signaling pathways that lead to uninhibited cell division and growth. Various recent epidemiological studies have indicated that consumption of cruciferous vegetables, such as garden cress, broccoli, etc., reduces the risk of cancer. Isothiocyanates (ITCs) have been identified as major active constituents of cruciferous vegetables. ITCs occur in plants as glucosinolate and can readily be derived by hydrolysis. Numerous mechanistic studies have demonstrated the anticancer effects of ITCs in various cancer types. ITCs suppress tumor growth by generating reactive oxygen species or by inducing cycle arrest leading to apoptosis. Based on the exciting outcomes of preclinical studies, few ITCs have advanced to the clinical phase. Available data from preclinical as well as available clinical studies suggest ITCs to be one of the promising anticancer agents available from natural sources. This is an up-to-date exhaustive review on the preventive and therapeutic effects of ITCs in cancer.
Project description:With the introduction of anthracycline-based regimens, 5-year survival rates have significantly improved in patients with early-stage breast cancer. With the addition of trastuzumab, a monoclonal antibody targeting the human epidermal growth factor receptor-2 (HER2), improvements in overall survival have been observed among patients with advanced HER2-positive disease. Subsequently, lapatinib, an orally bioavailable small molecule dual HER2- and EGFR/HER1-specific tyrosine kinase inhibitor, received Food and Drug Administration (FDA) approval in combination with capecitabine for patients with advanced HER2+ breast cancer. Then, pertuzumab in 2012 and ado-trastuzumab emtansine in 2013 were approved in the US and elsewhere based on evidence showing an improvement in survival outcomes in patients with mostly trastuzumab naïve or trastuzumab-exposed metastatic disease. The FDA also approved 1 year of extended adjuvant neratinib after chemotherapy and a year of trastuzumab for HER2-positive breast cancer on the basis of the ExteNET trial. The clinical benefit demonstrated by those drugs in advanced disease has triggered several adjuvant and neoadjuvant trials testing them in combination with chemotherapy, but also without conventional chemotherapy, using single or dual HER2-targeting drugs. In this article, we review the current data on the therapeutic management of HER2-positive early-stage breast cancer in the adjuvant and neoadjuvant setting. We also review the data the efficacy and safety of anthracycline-based and nonanthracycline-based adjuvant chemotherapy regimens combined with trastuzumab, and optimum chemotherapy regimens in small HER2-positive tumors.