Project description:This paper presents a novel continuum robot sheath for use in single-port minimally invasive procedures such as neuroendoscopy in which the sheath is designed to deliver multiple robotic arms. Actuation of the sheath is achieved by using precurved superelastic tubes lining the working channels used for arm delivery. These tubes perform a similar role to push/pull tendons, but can accomplish shape change of the sheath via rotation. A kinematic model using Cosserat rod theory is derived which is based on modeling the system as a set of eccentrically aligned precurved tubes constrained along their length by an elastic backbone. The specific case of a two-arm sheath is considered in detail. Simulation and experiments are used to investigate the validate the concept and model.
Project description:BackgroundEndobronchial navigation is performed in a variety of ways, none of which are meeting all the clinicians' needs required to reach diagnostic success in every patient. We sought to characterize precurved and steerable guiding sheaths (GS) in endobronchial targeting for lung biopsy using cone beam computed tomography (CBCT) based augmented fluoroscopy (AF) image guidance.MethodsFour precurved GS (EdgeTM 45, 90, 180, 180EW, Medtronic) and two steerable GS [6.5 F Destino Twist (DT), Oscor; 6 F Morph, BioCardia] were evaluated alone and in combination with an electromagnetic tracking (EM) guide and biopsy needles in three experimental phases: (I) bench model to assess GS deflection and perform biopsy simulations; (II) ex vivo swine lung comparing 2 steerable and 2 precurved GS; and (III) in vivo male swine lung to deliver a needle (n=2 swine) or to deliver a fiducial marker (n=2 swine) using 2 steerable GS. Ex vivo and in vivo image guidance was performed with either commercial or prototype AF image guidance software (Philips) based on either prior CT or procedural CBCT. Primary outcomes were GS delivery angle (θGS) and needle delivery angle (θN) in bench evaluation and needle delivery error (mm) (mean ± se) for ex vivo and in vivo studies.ResultsThe steerable DT had the largest range of GS delivery angles (θN: 0-114°) with either the 21 G or 19 G biopsy needle in the bench model. In ex vivo swine lung, needle delivery errors were 8.7±0.9 mm (precurved Edge 90), 5.4±1.9 mm (precurved Edge 180), 4.7±1.2 mm (steerable DT), and 5.6±2.4 mm (steerable Morph). In vivo, the needle delivery errors for the steerable GS were 6.0±1.0 mm (DT) and 15±7.0 mm (Morph). In vivo marker coil delivery was successful for both the steerable DT and morph GS. A case report demonstrated successful needle biopsy with the steerable DT.ConclusionsEndobronchial needle delivery with AF guidance is feasible without a bronchoscope with steerable GS providing comparable or improved accuracy compared to precurved GS.
Project description:ObjectivesWith the development of radiofrequency (RF) ablation technology. In recent years, more and more patients with atrial fibrillation (AF) have been treated with RF ablation. Steerable sheaths (SS) have been widely used in RF ablation of AF. The aim of this meta-analysis was to compare the efficacy and safety of AF ablation using SS and non-steerable sheaths (NSS).MethodsFrom the beginning to March 2022, we conducted a comprehensive, systematic search of the databases PubMed, MEDLINE, EMBASE, Web of Science and the Cochrane Library to finish the study. For categorical and continuous data, we used ORs and mean difference to calculate the effect. We also estimated the 95% CI.ResultsFive studies of RF ablation of AF were selected, three prospective and two retrospective, involving 282 SS and 236 NSS ablation patients. The rate of recurrence of AF or atrial arrhythmias was 27.3% versus 42.8% (OR: 0.52, 95% CI 0.36, 0.76, z=3.41, p=0.0006) and acute pulmonary vein (PV) reconnection (8.7% vs 17.4%, OR: 0.47, 95% CI 0.23, 0.95, z=2.10, p=0.04). In the SS group and the NSS group, the total ablation time (p=0.25), fluoroscopy time (p=0.26) and total operative time (p=0.35) were not significantly different.ConclusionsCompared with the use of NSS, the use of SS for RF ablation of AF can effectively reduce the recurrence rate of AF and the occurrence of acute PVs reconnection events. However, there is no advantage in shortening the total RF time, fluoroscopy time, total surgical time and reducing complications.
Project description:Lung cancer is the leading cause of cancer related death worldwide and in the United States according to the World Health Organization and National Cancer Institute. Improvements in the diagnosis and treatment of lung cancer are of the utmost importance. A prompt diagnosis is a crucial factor to improve outcomes in the treatment of lung cancer. Although the implementation of lung cancer screening guidelines and the overall steady growth in the use of computed tomography have improved the likelihood of detecting lung cancer at an earlier stage, the diagnosis of peripheral pulmonary lesions (PPLs) has remained a challenge. The bronchoscopic techniques for PPL sampling have historically offered modest diagnostic yields at best in comparison to computed tomography guided transthoracic needle aspiration (TTNA). Fortunately, recent advances in technology have ushered in a new era of diagnostic peripheral bronchoscopy. In this review, we discuss the introduction of advanced intraprocedural imaging included digital tomosynthesis (DT), augmented fluoroscopy (AF), and cone beam computed tomography. We discuss robotic assisted bronchoscopy with a review of the currently available platforms, and we discuss the implementation of novel biopsy tools. These technologic advances in the bronchoscopic approach to PPLs offer greater diagnostic certainty and pave the way toward peripheral therapeutics in bronchoscopy.
Project description:BackgroundEndobronchial ultrasound transbronchial needle aspiration (EBUS-TBNA) is the endoscopic method of choice for confirming lung cancer metastasis to mediastinal lymph nodes. Precision is crucial for correct staging and clinical decision-making. Navigation and multimodal imaging can potentially improve EBUS-TBNA efficiency.AimsTo demonstrate the feasibility of a multimodal image guiding system using electromagnetic navigation for ultrasound bronchoschopy in humans.MethodsFour patients referred for lung cancer diagnosis and staging with EBUS-TBNA were enrolled in the study. Target lymph nodes were predefined from the preoperative computed tomography (CT) images. A prototype convex probe ultrasound bronchoscope with an attached sensor for position tracking was used for EBUS-TBNA. Electromagnetic tracking of the ultrasound bronchoscope and ultrasound images allowed fusion of preoperative CT and intraoperative ultrasound in the navigation software. Navigated EBUS-TBNA was used to guide target lymph node localization and sampling. Navigation system accuracy was calculated, measured by the deviation between lymph node position in ultrasound and CT in three planes. Procedure time, diagnostic yield and adverse events were recorded.ResultsPreoperative CT and real-time ultrasound images were successfully fused and displayed in the navigation software during the procedures. Overall navigation accuracy (11 measurements) was 10.0 ± 3.8 mm, maximum 17.6 mm, minimum 4.5 mm. An adequate sample was obtained in 6/6 (100%) of targeted lymph nodes. No adverse events were registered.ConclusionsElectromagnetic navigated EBUS-TBNA was feasible, safe and easy in this human pilot study. The clinical usefulness was clearly demonstrated. Fusion of real-time ultrasound, preoperative CT and electromagnetic navigational bronchoscopy provided a controlled guiding to level of target, intraoperative overview and procedure documentation.
Project description:Endovascular catheter-based technologies have revolutionized the treatment of complex vascular pathology. Catheters and endovascular devices that can be maneuvered through tortuous arterial anatomy have enabled minimally invasive treatment in the peripheral arterial system. Although mechanical factors drive an interventionalist's choice of catheters and sheaths, these decisions are mostly made qualitative and based on personal experience and procedural pattern recognition. However, a definitive quantitative characterization of endovascular tools that are best suited for specific peripheral arterial beds is currently lacking. To establish a foundation for quantitative tool selection in the neurovascular and lower extremity peripheral arterial beds, we developed a nonlinear beam theory method to quantify catheter and sheath flexural rigidity. We applied this assessment to a sampling of commonly utilized commercially available peripheral arterial catheters and sheaths. Our results demonstrated that catheters and sheaths adopted for existing practice patterns to treat peripheral arterial disease in the lower extremities and neurovascular system have different but overlapping ranges of flexural rigidities that were not sensitive to luminal diameters within each procedure type. Our approach provides an accurate and effective method for characterization of flexural rigidity properties of catheters and sheaths, and a foundation for developing future technologies tailored for specific peripheral arterial systems.
Project description:With the development of multidetector computed-tomography (MDCT) scanners and ultrathin bronchoscopes, the use of bronchoscopy for diagnosing peripheral lung-cancer nodules is becoming a viable option. The work flow for assessing lung cancer consists of two phases: 1) 3-D MDCT analysis and 2) live bronchoscopy. Unfortunately, the yield rates for peripheral bronchoscopy have been reported to be as low as 14%, and bronchoscopy performance varies considerably between physicians. Recently, proposed image-guided systems have shown promise for assisting with peripheral bronchoscopy. Yet, MDCT-based route planning to target sites has relied on tedious error-prone techniques. In addition, route planning tends not to incorporate known anatomical, device, and procedural constraints that impact a feasible route. Finally, existing systems do not effectively integrate MDCT-derived route information into the live guidance process. We propose a system that incorporates an automatic optimal route-planning method, which integrates known route constraints. Furthermore, our system offers a natural translation of the MDCT-based route plan into the live guidance strategy via MDCT/video data fusion. An image-based study demonstrates the route-planning method's functionality. Next, we present a prospective lung-cancer patient study in which our system achieved a successful navigation rate of 91% to target sites. Furthermore, when compared to a competing commercial system, our system enabled bronchoscopy over two airways deeper into the airway-tree periphery with a sample time that was nearly 2 min shorter on average. Finally, our system's ability to almost perfectly predict the depth of a bronchoscope's navigable route in advance represents a substantial benefit of optimal route planning.
Project description:A 45-year-old Japanese woman complained of uncontrolled hypertension and face swelling. She was diagnosed with Cushing's syndrome with secretion of adrenocorticotropic hormone. Fluorodeoxyglucose positron emission tomography-computed tomography revealed a 2 × 2 cm mass in her left lung, with high standardized maximum uptake value. She underwent bronchoscopy with endobronchial ultrasound via a guide-sheath. Surgical resection of her left upper lung was performed, and pathological examination showed a typical carcinoid tumor. After lung resection, she recovered from her subjective symptoms. Diagnosis of peripheral carcinoid tumor of the lung is generally difficult. Here, we introduce a case of peripheral pulmonary carcinoid tumor diagnosed by endobronchial-ultrasound-guided bronchoscopy.