Ontology highlight
ABSTRACT:
SUBMITTER: Becker J
PROVIDER: S-EPMC8678380 | biostudies-literature | 2021 Dec
REPOSITORIES: biostudies-literature
Becker Joel J Burik Casper A P CAP Goldman Grant G Wang Nancy N Jayashankar Hariharan H Bennett Michael M Belsky Daniel W DW Karlsson Linnér Richard R Ahlskog Rafael R Kleinman Aaron A Hinds David A DA Caspi Avshalom A Corcoran David L DL Moffitt Terrie E TE Poulton Richie R Sugden Karen K Williams Benjamin S BS Harris Kathleen Mullan KM Steptoe Andrew A Ajnakina Olesya O Milani Lili L Esko Tõnu T Iacono William G WG McGue Matt M Magnusson Patrik K E PKE Mallard Travis T TT Harden K Paige KP Tucker-Drob Elliot M EM Herd Pamela P Freese Jeremy J Young Alexander A Beauchamp Jonathan P JP Koellinger Philipp D PD Oskarsson Sven S Johannesson Magnus M Visscher Peter M PM Meyer Michelle N MN Laibson David D Cesarini David D Benjamin Daniel J DJ Turley Patrick P Okbay Aysu A
Nature human behaviour 20210617 12
Polygenic indexes (PGIs) are DNA-based predictors. Their value for research in many scientific disciplines is growing rapidly. As a resource for researchers, we used a consistent methodology to construct PGIs for 47 phenotypes in 11 datasets. To maximize the PGIs' prediction accuracies, we constructed them using genome-wide association studies-some not previously published-from multiple data sources, including 23andMe and UK Biobank. We present a theoretical framework to help interpret analyses ...[more]