Unknown

Dataset Information

0

Nonmuscle myosin heavy chain IIA facilitates SARS-CoV-2 infection in human pulmonary cells.


ABSTRACT: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), binds to host receptor angiotensin-converting enzyme 2 (ACE2) through its spike (S) glycoprotein, which mediates membrane fusion and viral entry. However, the expression of ACE2 is extremely low in a variety of human tissues, especially in the airways. Thus, other coreceptors and/or cofactors on the surface of host cells may contribute to SARS-CoV-2 infection. Here, we identified nonmuscle myosin heavy chain IIA (MYH9) as an important host factor for SARS-CoV-2 infection of human pulmonary cells by using APEX2 proximity-labeling techniques. Genetic ablation of MYH9 significantly reduced SARS-CoV-2 pseudovirus infection in wild type (WT) A549 and Calu-3 cells, and overexpression of MYH9 enhanced the pseudovirus infection in WT A549 and H1299 cells. MYH9 was colocalized with the SARS-CoV-2 S and directly interacted with SARS-CoV-2 S through the S2 subunit and S1-NTD (N-terminal domain) by its C-terminal domain (designated as PRA). Further experiments suggested that endosomal or myosin inhibitors effectively block the viral entry of SARS-CoV-2 into PRA-A549 cells, while transmembrane protease serine 2 (TMPRSS2) and cathepsin B and L (CatB/L) inhibitors do not, indicating that MYH9 promotes SARS-CoV-2 endocytosis and bypasses TMPRSS2 and CatB/L pathway. Finally, we demonstrated that loss of MYH9 reduces authentic SARS-CoV-2 infection in Calu-3, ACE2-A549, and ACE2-H1299 cells. Together, our results suggest that MYH9 is a candidate host factor for SARS-CoV-2, which mediates the virus entering host cells by endocytosis in an ACE2-dependent manner, and may serve as a potential target for future clinical intervention strategies.

SUBMITTER: Chen J 

PROVIDER: S-EPMC8685683 | biostudies-literature | 2021 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Nonmuscle myosin heavy chain IIA facilitates SARS-CoV-2 infection in human pulmonary cells.

Chen Jian J   Fan Jun J   Chen Zhilu Z   Zhang Miaomiao M   Peng Haoran H   Liu Jian J   Ding Longfei L   Liu Mingbin M   Zhao Chen C   Zhao Ping P   Zhang Shuye S   Zhang Xiaoyan X   Xu Jianqing J  

Proceedings of the National Academy of Sciences of the United States of America 20211201 50


Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), binds to host receptor angiotensin-converting enzyme 2 (ACE2) through its spike (S) glycoprotein, which mediates membrane fusion and viral entry. However, the expression of ACE2 is extremely low in a variety of human tissues, especially in the airways. Thus, other coreceptors and/or cofactors on the surface of host cells may contribute to SARS-CoV-2 infection. Here, we identi  ...[more]

Similar Datasets

| S-EPMC4568263 | biostudies-literature
| S-EPMC1920554 | biostudies-literature
| S-EPMC2597608 | biostudies-literature
| S-EPMC2234359 | biostudies-literature
| S-EPMC3025356 | biostudies-literature
| S-EPMC3911693 | biostudies-literature
| S-EPMC3336789 | biostudies-literature
| S-EPMC6509187 | biostudies-literature
| S-EPMC6117828 | biostudies-literature
| S-EPMC6148259 | biostudies-literature