Unknown

Dataset Information

0

The Glenolabral Articular Disruption Lesion Is a Biomechanical Risk Factor for Recurrent Shoulder Instability.


ABSTRACT:

Purpose

To investigate the biomechanical effect of a glenolabral articular disruption (GLAD) lesion on glenohumeral laxity.

Methods

Human cadaveric glenoids (n = 10) were excised of soft tissue, including the labrum to focus on the biomechanical effects of osteochondral surfaces. Glenohumeral dislocations were performed in a robotic test setup, while displacement forces and three-dimensional morphometric properties were measured. The stability ratio (SR), a biomechanical characteristic for glenohumeral stability, was used as an outcome parameter, as well as the path of least resistance, determined by a hybrid robot displacement. The impacts of chondral and bony defects were analyzed related to the intact glenoid. Statistical comparison of the defect states on SR and the path of least resistance was performed using repeated-measures ANOVA and Tukey's post hoc test for multiple comparisons (P < .05). The relationship between concavity depth and SR was approximated in a nonlinear regression.

Results

The initial SR of the intact glenoid (28.3 ± 7.8%) decreased significantly by 4.7 ± 3% in case of a chondral defect (P = .002). An additional loss of 3.2 ± 2.3% was provoked by a 20% bony defect (P = .004). The path of least resistance was deflected significantly more inferiorly by a GLAD lesion (2.9 ± 1.8°, P = .002) and even more by a bony defect (2.5 ± 2.9°, P = .002). The nonlinear regression with concavity depth as predictor for the SR resulted in a high correlation coefficient (r = .81).

Conclusions

Chondral integrity is an important contributor to the SR. Chondral defects as present in GLAD lesions may cause increased laxity, influence the humeral track on the glenoid during dislocation, and represent a biomechanical risk factor for a recurrent instability.

Clinical relevance

Cartilage deficiency corresponding to GLAD lesions may be a risk factor for impaired surgical outcomes.

SUBMITTER: Wermers J 

PROVIDER: S-EPMC8689271 | biostudies-literature | 2021 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

The Glenolabral Articular Disruption Lesion Is a Biomechanical Risk Factor for Recurrent Shoulder Instability.

Wermers Jens J   Schliemann Benedikt B   Raschke Michael J MJ   Dyrna Felix F   Heilmann Lukas F LF   Michel Philipp A PA   Katthagen J Christoph JC  

Arthroscopy, sports medicine, and rehabilitation 20210915 6


<h4>Purpose</h4>To investigate the biomechanical effect of a glenolabral articular disruption (GLAD) lesion on glenohumeral laxity.<h4>Methods</h4>Human cadaveric glenoids (<i>n</i> = 10) were excised of soft tissue, including the labrum to focus on the biomechanical effects of osteochondral surfaces. Glenohumeral dislocations were performed in a robotic test setup, while displacement forces and three-dimensional morphometric properties were measured. The stability ratio (SR), a biomechanical ch  ...[more]

Similar Datasets

| S-EPMC9210388 | biostudies-literature
| S-EPMC7528205 | biostudies-literature
| S-EPMC8355410 | biostudies-literature
| S-EPMC6383179 | biostudies-literature
| S-EPMC9705910 | biostudies-literature
| S-EPMC10323691 | biostudies-literature
| S-EPMC5799491 | biostudies-literature
| S-EPMC8721088 | biostudies-literature
| S-EPMC9446191 | biostudies-literature
| S-EPMC7823086 | biostudies-literature