Project description:ContextA disease can be a source of disturbance, causing population declines or extirpations, altering species interactions, and affecting habitat structure. This is particularly relevant for diseases that affect keystone species or ecosystem engineers, leading to potentially cascading effects on ecosystems.ObjectiveWe investigated the invasion of a non-native disease, plague, to a keystone species, prairie dogs, and documented the resulting extent of fragmentation and habitat loss in western grasslands. Specifically, we assessed how the arrival of plague in the Conata Basin, South Dakota, United States, affected the size, shape, and aggregation of prairie dog colonies, an animal species known to be highly susceptible to plague.MethodsColonies in the prairie dog complex were mapped every 1 to 3 years from 1993 to 2015. Plague was first confirmed in 2008 and we compared prairie dog complex and colony characteristics before and after the arrival of plague.ResultsAs expected the colony complex and the patches in colonies became smaller and more fragmented after the arrival of plague; the total area of each colony and the mean area per patch within a colony decreased, the number of patches per colony increased, and mean contiguity of each patch decreased, leading to habitat fragmentation.ConclusionWe demonstrate how an emerging infectious disease can act as a source of disturbance to natural systems and lead to potentially permanent alteration of habitat characteristics. While perhaps not traditionally thought of as a source of ecosystem disturbances, in recent years emerging infectious diseases have shown to be able to have large effects on ecosystems if they affect keystone species.
Project description:Yersinia pestis, causative agent of plague, occurs throughout the western United States in rodent populations and periodically causes epizootics in susceptible species, including black-tailed prairie dogs (Cynomys ludovicianus). How Y. pestis persists long-term in the environment between these epizootics is poorly understood but multiple mechanisms have been proposed, including, among others, a separate enzootic transmission cycle that maintains Y. pestis without involvement of epizootic hosts and persistence of Y. pestis within epizootic host populations without causing high mortality within those populations. We live-trapped and collected fleas from black-tailed prairie dogs and other mammal species from sites with and without black-tailed prairie dogs in 2004 and 2005 and tested all fleas for presence of Y. pestis. Y. pestis was not detected in 2126 fleas collected in 2004 but was detected in 294 fleas collected from multiple sites in 2005, before and during a widespread epizootic that drastically reduced black-tailed prairie dog populations in the affected colonies. Temporal and spatial patterns of Y. pestis occurrence in fleas and genotyping of Y. pestis present in some infected fleas suggest Y. pestis was introduced multiple times from sources outside the study area and once introduced, was dispersed between several sites. We conclude Y. pestis likely was not present in these black-tailed prairie dog colonies prior to epizootic activity in these colonies. Although we did not identify likely enzootic hosts, we found evidence that deer mice (Peromyscus maniculatus) may serve as bridging hosts for Y. pestis between unknown enzootic hosts and black-tailed prairie dogs.
Project description:Since the eradication of Smallpox, researchers have attempted to study Orthopoxvirus pathogenesis and immunity in animal models in order to correlate results human smallpox. A solely human pathogen, Orthopoxvirus variola fails to produce authentic smallpox illness in any other animal species tested to date. In 2003, an outbreak in the USA of Orthopoxvirus monkeypox, revealed the susceptibility of the North American black-tailed prairie dog (Cynomys ludovicianus) to infection and fulminate disease. Prairie dogs infected with Orthopoxvirus monkeypox present with a clinical scenario similar to ordinary smallpox, including prodrome, rash, and high mortality. This study examines if Black-tailed prairie dogs can become infected with O. variola and serve as a surrogate model for the study of human smallpox disease. Substantive evidence of infection is found in immunological seroconversion of animals to either intranasal or intradermal challenges with O. variola, but in the absence of overt illness.
Project description:BackgroundHost associated gut microbiota are important in understanding the coevolution of host-microbe, and how they may help wildlife populations to adapt to rapid environmental changes. Mammalian gut microbiota composition and diversity may be affected by a variety of factors including geographic variation, seasonal variation in diet, habitat disturbance, environmental conditions, age, and sex. However, there have been few studies that examined how ecological and environmental factors influence gut microbiota composition in animals' natural environments. In this study, we explore how host habitat, geographical location and environmental factors affect the fecal microbiota of Cynomys ludovicianus at a small spatial scale. We collected fecal samples from five geographically distinct locations in the Texas Panhandle classified as urban and rural areas and analyzed them using high throughput 16S rRNA gene amplicon sequencing.ResultsThe results showed that microbiota of these fecal samples was largely dominated by the phylum Bacteroidetes. Fecal microbiome diversity and composition differed significantly across sampling sites and habitats. Prairie dogs inhabiting urban areas showed reduced fecal diversity due to more homogenous environment and, likely, anthropogenic disturbance. Urban prairie dog colonies displayed greater phylogenetic variation among replicates than those in rural habitats. Differentially abundant analysis revealed that bacterial species pathogenic to humans and animals were highly abundant in urban areas which indicates that host health and fitness might be negatively affected. Random forest models identified Alistipes shahii as the important species driving the changes in fecal microbiome composition. Despite the effects of habitat and geographic location of host, we found a strong correlation with environmental factors and that- average maximum temperature was the best predictor of prairie dog fecal microbial diversity.ConclusionsOur findings suggest that reduction in alpha diversity in conjunction with greater dispersion in beta diversity could be indicative of declining host health in urban areas; this information may, in turn, help determine future conservation efforts. Moreover, several bacterial species pathogenic to humans and other animals were enriched in prairie dog colonies near urban areas, which may in turn adversely affect host phenotype and fitness.
Project description:Sylvatic plague, caused by Yersinia pestis, frequently afflicts prairie dogs (Cynomys spp.), causing population declines and local extirpations. We tested the effectiveness of bait-delivered sylvatic plague vaccine (SPV) in prairie dog colonies on 29 paired placebo and treatment plots (1-59 ha in size; average 16.9 ha) in 7 western states from 2013 to 2015. We compared relative abundance (using catch per unit effort (CPUE) as an index) and apparent survival of prairie dogs on 26 of the 29 paired plots, 12 with confirmed or suspected plague (Y. pestis positive carcasses or fleas). Even though plague mortality occurred in prairie dogs on vaccine plots, SPV treatment had an overall positive effect on CPUE in all three years, regardless of plague status. Odds of capturing a unique animal were 1.10 (95% confidence interval [C.I.] 1.02-1.19) times higher per trap day on vaccine-treated plots than placebo plots in 2013, 1.47 (95% C.I. 1.41-1.52) times higher in 2014 and 1.19 (95% C.I. 1.13-1.25) times higher in 2015. On pairs where plague occurred, odds of apparent survival were 1.76 (95% Bayesian credible interval [B.C.I.] 1.28-2.43) times higher on vaccine plots than placebo plots for adults and 2.41 (95% B.C.I. 1.72-3.38) times higher for juveniles. Our results provide evidence that consumption of vaccine-laden baits can protect prairie dogs against plague; however, further evaluation and refinement are needed to optimize SPV use as a management tool.
Project description:Prairie dogs (genus Cynomys) are a charismatic symbol of the American West. Their large social aggregations and complex vocalizations have been the subject of scientific and popular interest for decades. A large body of literature has documented their role as keystone species of western North America's grasslands: They generate habitat for other vertebrates, increase nutrient availability for plants, and act as a food source for mammalian, squamate, and avian predators. An additional keystone role lies in their extreme susceptibility to sylvatic plague (caused by Yersinia pestis), which results in periodic population extinctions, thereby generating spatiotemporal heterogeneity in both biotic communities and ecological processes. Here, we report the first Cynomys genome for a Gunnison's prairie dog (C. gunnisoni gunnisoni) from Telluride, Colorado (USA). The genome was constructed using a hybrid assembly of PacBio and Illumina reads and assembled with MaSuRCA and PBJelly, which resulted in a scaffold N50 of 824 kb. Total genome size was 2.67 Gb, with 32.46% of the bases occurring in repeat regions. We recovered 94.9% (91% complete) of the single copy orthologs using the mammalian Benchmarking Universal Single-Copy Orthologs database and detected 49,377 gene models (332,141 coding regions). Pairwise Sequentially Markovian Coalescent showed support for long-term stable population size followed by a steady decline beginning near the end of the Pleistocene, as well as a recent population reduction. The genome will aid in studies of mammalian evolution, disease resistance, and the genomic basis of life history traits in ground squirrels.
Project description:Yersinia pestis was introduced to North America around 1900 and leads to nearly 100% mortality in prairie dog (Cynomys spp.) colonies during epizootic events, which suggests this pathogen may exert a strong selective force. We characterized genetic diversity at an MHC class II locus (DRB1) in Gunnison's prairie dog (C. gunnisoni) and quantified population genetic structure at the DRB1 versus 12 microsatellite loci in three large Arizona colonies. Two colonies, Seligman (SE) and Espee Ranch (ES), have experienced multiple plague-related die-offs in recent years, whereas plague has never been documented at Aubrey Valley (AV). We found fairly low allelic diversity at the DRB1 locus, with one allele (DRB1*01) at high frequency (0.67-0.87) in all colonies. Two other DRB1 alleles appear to be trans-species polymorphisms shared with the black-tailed prairie dog (C. ludovicianus), indicating that these alleles have been maintained across evolutionary time frames. Estimates of genetic differentiation were generally lower at the MHC locus (F ST = 0.033) than at microsatellite markers (F ST = 0.098). The reduced differentiation at DRB1 may indicate that selection has been important for shaping variation at MHC loci, regardless of the presence or absence of plague in recent decades. However, genetic drift has probably also influenced the DRB1 locus because its level of differentiation was not different from that of microsatellites in an F ST outlier analysis. We then compared specific MHC alleles to plague survivorship in 60 C. gunnisoni that had been experimentally infected with Y. pestis. We found that survival was greater in individuals that carried at least one copy of the most common allele (DRB1*01) compared to those that did not (60% vs. 20%). Although the sample sizes of these two groups were unbalanced, this result suggests the possibility that this MHC class II locus, or a nearby linked gene, could play a role in plague survival.
Project description:Sylvatic plague poses a substantial risk to black-tailed prairie dogs ( Cynomys ludovicianus) and their obligate predator, the black-footed ferret ( Mustela nigripes). The effects of plague on prairie dogs and ferrets are mitigated using a deltamethrin pulicide dust that reduces the spread of plague by killing fleas, the vector for the plague bacterium. In portions of Conata Basin, Buffalo Gap National Grassland, and Badlands National Park, South Dakota, US, 0.05% deltamethrin has been infused into prairie dog burrows on an annual basis since 2005. We aimed to determine if fleas ( Oropsylla hirsuta) in portions of the Conata Basin and Badlands National Park have evolved resistance to deltamethrin. We assessed flea prevalence, obtained by combing prairie dogs for fleas, as an indirect measure of resistance. Dusting was ineffective in two colonies treated with deltamethrin for >8 yr; flea prevalence rebounded within 1 mo of dusting. We used a bioassay that exposed fleas to deltamethrin to directly evaluate resistance. Fleas from colonies with >8 yr of exposure to deltamethrin exhibited survival rates that were 15% to 83% higher than fleas from sites that had never been dusted. All fleas were paralyzed or dead after 55 min. After removal from deltamethrin, 30% of fleas from the dusted colonies recovered, compared with 1% of fleas from the not-dusted sites. Thus, deltamethrin paralyzed fleas from colonies with long-term exposure to deltamethrin, but a substantial number of those fleas was resistant and recovered. Flea collections from live-trapped prairie dogs in Thunder Basin National Grassland, Wyoming, US, suggest that, in some cases, fleas might begin to develop a moderate level of resistance to deltamethrin after 5-6 yr of annual treatments. Restoration of black-footed ferrets and prairie dogs will rely on an adaptive, integrative approach to plague management, for instance involving the use of vaccines and rotating applications of insecticidal products with different active ingredients.
Project description:The plague bacterium Yersinia pestis is lethal to endangered black-footed ferrets (Mustela nigripes, BFF) and the prairie dogs (Cynomys spp., PD) on which they depend for habitat and prey. We assessed the effectiveness of an oral sylvatic plague vaccine delivered in baits to black-tailed PD (Cynomys ludovicianus, BTPD) from 2013 to 2017 on the Charles M. Russell National Wildlife Refuge (CMR) in northcentral Montana. We permanently marked BTPD on four paired vaccine (N = 1,349 individuals) and placebo plots (N = 926; 7,027 total captures). We analyzed capture-recapture data under a Cormack-Jolly-Seber model to estimate annual apparent survival. Overall, survival averaged 0.05 lower on vaccine plots than on paired placebo plots. Immediately before noticeable die-offs and detecting plague on pairs CMR1 and CMR2, 89% of BTPD sampled on vaccine plots had consumed at least one bait and the immune systems (pleural) of 40% were likely boosted by consuming baits over multiple years. Survival to the following year was 0.16 and 0.05 on the vaccine plots and 0.19 and 0.06 on the placebo plots for pairs CMR1 and CMR2, respectively. These rates were markedly lower than 0.63, the overall average estimate on those same plots during the previous 3 years. PD populations subjected to such large die-offs would not be expected to sustain a BFF population. An overriding limitation to achieving sufficient protection rests with vaccine delivery constraints. Late summer/fall bait distribution results in the highest bait uptake rates. However, the PD birth pulse each spring can double the size of populations in most years, greatly reducing the proportion of vaccinates in populations and diminishing potential herd immunity benefits. In addition to nonvaccinated juveniles and PD that do not consume bait, incomplete vaccine protection and time required for immunity to develop leaves a large majority of PD populations vulnerable to plague for 6-7 months or more each year.