Unknown

Dataset Information

0

The versatile regulation of K2P channels by polyanionic lipids of the phosphoinositide and fatty acid metabolism.


ABSTRACT: Work over the past three decades has greatly advanced our understanding of the regulation of Kir K+ channels by polyanionic lipids of the phosphoinositide (e.g., PIP2) and fatty acid metabolism (e.g., oleoyl-CoA). However, comparatively little is known regarding the regulation of the K2P channel family by phosphoinositides and by long-chain fatty acid-CoA esters, such as oleoyl-CoA. We screened 12 mammalian K2P channels and report effects of polyanionic lipids on all tested channels. We observed activation of members of the TREK, TALK, and THIK subfamilies, with the strongest activation by PIP2 for TRAAK and the strongest activation by oleoyl-CoA for TALK-2. By contrast, we observed inhibition for members of the TASK and TRESK subfamilies. Our results reveal that TASK-2 channels have both activatory and inhibitory PIP2 sites with different affinities. Finally, we provided evidence that PIP2 inhibition of TASK-1 and TASK-3 channels is mediated by closure of the recently identified lower X-gate as critical mutations within the gate (i.e., L244A, R245A) prevent PIP2-induced inhibition. Our findings establish that K+ channels of the K2P family are highly sensitive to polyanionic lipids, extending our knowledge of the mechanisms of lipid regulation and implicating the metabolism of these lipids as possible effector pathways to regulate K2P channel activity.

SUBMITTER: Riel EB 

PROVIDER: S-EPMC8693234 | biostudies-literature | 2022 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

The versatile regulation of K2P channels by polyanionic lipids of the phosphoinositide and fatty acid metabolism.

Riel Elena B EB   Jürs Björn C BC   Cordeiro Sönke S   Musinszki Marianne M   Schewe Marcus M   Baukrowitz Thomas T  

The Journal of general physiology 20211220 2


Work over the past three decades has greatly advanced our understanding of the regulation of Kir K+ channels by polyanionic lipids of the phosphoinositide (e.g., PIP2) and fatty acid metabolism (e.g., oleoyl-CoA). However, comparatively little is known regarding the regulation of the K2P channel family by phosphoinositides and by long-chain fatty acid-CoA esters, such as oleoyl-CoA. We screened 12 mammalian K2P channels and report effects of polyanionic lipids on all tested channels. We observed  ...[more]

Similar Datasets

| S-EPMC3835666 | biostudies-literature
| S-EPMC3583019 | biostudies-literature
| S-EPMC3884141 | biostudies-literature
| S-EPMC1458984 | biostudies-literature
| S-EPMC10543664 | biostudies-literature
| S-EPMC4906011 | biostudies-literature
| S-EPMC11726430 | biostudies-literature
| S-EPMC7781597 | biostudies-literature
| S-EPMC3181484 | biostudies-literature
| S-EPMC3130955 | biostudies-literature