Unknown

Dataset Information

0

Dynorphin A induces membrane permeabilization by formation of proteolipidic pores. Insights from electrophysiology and computational simulations.


ABSTRACT: Dynorphins are endogenous neuropeptides that function as ligands for the κ-opioid receptor. In addition to opioid activity, dynorphins can induce several pathological effects such as neurological dysfunctions and cell death. Previous studies have suggested that Dynorphin A (DynA) mediates some pathogenic actions through formation of transient pores in lipid domains of the plasma membrane. Here, we use planar bilayer electrophysiology to show that DynA induces pore formation in negatively charged membranes. We find a large variability in pore conformations showing equilibrium conductance fluctuations, what disregards electroporation as the dominant mechanism of pore formation. Ion selectivity measurements showing cationic selectivity indicate that positive protein charges of DynA are stabilized by phosphatidyl serine negative charges in the formation of combined structures. We complement our study with computational simulations that assess the stability of diverse peptide arrangements in the hydrophobic core of the bilayer. We show that DynA is capable of assembling in charged membranes to form water-filled pores that conduct ions.

SUBMITTER: Perini DA 

PROVIDER: S-EPMC8718563 | biostudies-literature | 2022

REPOSITORIES: biostudies-literature

altmetric image

Publications

Dynorphin A induces membrane permeabilization by formation of proteolipidic pores. Insights from electrophysiology and computational simulations.

Perini D Aurora DA   Aguilella-Arzo Marcel M   Alcaraz Antonio A   Perálvarez-Marín Alex A   Queralt-Martín María M  

Computational and structural biotechnology journal 20211216


Dynorphins are endogenous neuropeptides that function as ligands for the κ-opioid receptor. In addition to opioid activity, dynorphins can induce several pathological effects such as neurological dysfunctions and cell death. Previous studies have suggested that Dynorphin A (DynA) mediates some pathogenic actions through formation of transient pores in lipid domains of the plasma membrane. Here, we use planar bilayer electrophysiology to show that DynA induces pore formation in negatively charged  ...[more]

Similar Datasets

| S-EPMC5389965 | biostudies-literature
| S-EPMC6572617 | biostudies-literature
| S-EPMC10046094 | biostudies-literature
| S-EPMC3320606 | biostudies-literature
2023-07-13 | GSE237309 | GEO
| S-EPMC5034716 | biostudies-literature
| S-EPMC4403049 | biostudies-literature
| S-EPMC7266643 | biostudies-literature
| S-EPMC10399446 | biostudies-literature
| S-EPMC3317353 | biostudies-literature