Ontology highlight
ABSTRACT: Background
Machine learning (ML) is developing fast with promising prospects within medicine and already has several applications in perioperative care. We conducted a scoping review to examine the extent and potential limitations of ML implementation in perioperative anesthetic care, specifically in cardiac surgery patients.Methods
We mapped the current literature by searching three databases: MEDLINE (Ovid), EMBASE (Ovid), and Cochrane Library. Articles were eligible if they reported on perioperative ML use in the field of cardiac surgery with relevance to anesthetic practices. Data on the applicability of ML and comparability to conventional statistical methods were extracted.Results
Forty-six articles on ML relevant to the work of the anesthesiologist in cardiac surgery were identified. Three main categories emerged: (I) event and risk prediction, (II) hemodynamic monitoring, and (III) automation of echocardiography. Prediction models based on ML tend to behave similarly to conventional statistical methods. Using dynamic hemodynamic or ultrasound data in ML models, however, shifts the potential to promising results.Conclusions
ML in cardiac surgery is increasingly used in perioperative anesthetic management. The majority is used for prediction purposes similar to conventional clinical scores. Remarkable ML model performances are achieved when using real-time dynamic parameters. However, beneficial clinical outcomes of ML integration have yet to be determined. Nonetheless, the first steps introducing ML in perioperative anesthetic care for cardiac surgery have been taken.
SUBMITTER: Rellum SR
PROVIDER: S-EPMC8743411 | biostudies-literature | 2021 Dec
REPOSITORIES: biostudies-literature
Rellum Santino R SR Schuurmans Jaap J van der Ven Ward H WH Eberl Susanne S Driessen Antoine H G AHG Vlaar Alexander P J APJ Veelo Denise P DP
Journal of thoracic disease 20211201 12
<h4>Background</h4>Machine learning (ML) is developing fast with promising prospects within medicine and already has several applications in perioperative care. We conducted a scoping review to examine the extent and potential limitations of ML implementation in perioperative anesthetic care, specifically in cardiac surgery patients.<h4>Methods</h4>We mapped the current literature by searching three databases: MEDLINE (Ovid), EMBASE (Ovid), and Cochrane Library. Articles were eligible if they re ...[more]