Ontology highlight
ABSTRACT:
SUBMITTER: Imbalzano E
PROVIDER: S-EPMC8746167 | biostudies-literature | 2021 Dec
REPOSITORIES: biostudies-literature
Imbalzano Egidio E Orlando Luana L Sciacqua Angela A Nato Giuseppe G Dentali Francesco F Nassisi Veronica V Russo Vincenzo V Camporese Giuseppe G Bagnato Gianluca G Cicero Arrigo F G AFG Dattilo Giuseppe G Vatrano Marco M Versace Antonio Giovanni AG Squadrito Giovanni G Di Micco Pierpaolo P
Journal of clinical medicine 20211231 1
To realize a machine learning (ML) model to estimate the dose of low molecular weight heparin to be administered, preventing thromboembolism events in COVID-19 patients with active cancer. <b>Methods:</b> We used a dataset comprising 131 patients with active cancer and COVID-19. We considered five ML models: logistic regression, decision tree, random forest, support vector machine and Gaussian naive Bayes. We decided to implement the logistic regression model for our study. A model with 19 varia ...[more]