Project description:Elevation of operational temperatures of polymer electrolyte membrane fuel cells (PEMFCs) has been demonstrated with phosphoric acid-doped polybenzimidazole (PA/PBI) membranes. The technical perspective of the technology is simplified construction and operation with possible integration with, e.g., methanol reformers. Toward this target, significant efforts have been made to develop acid-base polymer membranes, inorganic proton conductors, and organic-inorganic composite materials. This report is devoted to updating the recent progress of the development particularly of acid-doped PBI, phosphate-based solid inorganic proton conductors, and their composite electrolytes. Long-term stability of PBI membranes has been well documented, however, at typical temperatures of 160°C. Inorganic proton-conducting materials, e.g., alkali metal dihydrogen phosphates, heteropolyacids, tetravalent metal pyrophosphates, and phosphosilicates, exhibit significant proton conductivity at temperatures of up to 300°C but have so far found limited applications in the form of thin films. Composite membranes of PBI and phosphates, particularly in situ formed phosphosilicates in the polymer matrix, showed exceptionally stable conductivity at temperatures well above 200°C. Fuel cell tests at up to 260°C are reported operational with good tolerance of up to 16% CO in hydrogen, fast kinetics for direct methanol oxidation, and feasibility of nonprecious metal catalysts. The prospect and future exploration of new proton conductors based on phosphate immobilization and fuel cell technologies at temperatures above 200°C are discussed.
Project description:High ortho selectivity for Ir-catalyzed C-H borylations (CHBs) of anilines results when B2eg2 (eg = ethylene glycolate) is used as the borylating reagent in lieu of B2pin2, which is known to give isomeric mixtures with anilines lacking a blocking group at the 4-position. With this modification, high selectivities and good yields are now possible for various anilines, including those with groups at the 2- and 3-positions. Experiments indicate that ArylN(H)Beg species are generated prior to CHB and support the improved ortho selectivity relative to B2pin2 reactions arising from smaller Beg ligands on the Ir catalyst. The lowest-energy transition states (TSs) from density functional theory computational analyses have N-H···O hydrogen-bonding interactions between PhN(H)Beg and O atoms in Beg ligands. Ir-catalyzed CHB of PhN(H)Me with B2eg2 is also highly ortho-selective. 1H NMR experiments show that N-borylation fully generates PhN(Me)Beg prior to CHB. The TS with the lowest Gibbs energy was the ortho TS, in which the Beg unit is oriented anti to the bipyridine ligand.
Project description:Strain is generated in concrete subjected to elevated temperatures owing to the influence of factors such as thermal expansion and design load. Such strains resulting from elevated temperatures and load can significantly influence the stability of a structure during and after a fire. In addition, the lower the water-to-binder (W-B) ratio and the smaller the quantity of aggregates in high-strength concrete, the more likely it is for unstable strain to occur. Hence, in this study, the compressive strength, elastic modulus, and creep behavior were evaluated at target temperatures of 100, 200, 300, 500, and 800 °C for high-strength concretes with W-B ratios of 30%, 26%, and 23%. The loading conditions were set as non-loading and 0.33fcu. It was found that as the compressive strength of the concrete increased, the mechanical characteristics deteriorated and transient creep increased. Furthermore, when the point at which creep strain occurred at elevated temperatures after the occurrence of transient creep was considered, greater shrinkage strain occurred as the compressive strength of the concrete increased. At a heating temperature of 800 °C, the 80 and 100 MPa test specimens showed creep failure within a shrinkage strain range similar to the strain at the maximum load.
Project description:A palladium(ii)/norbornene cooperative catalysis enabled redox-neutral ortho-C-H amination of pinacol aryl- or heteroarylborates for the synthesis of structurally diverse anilines is reported. This method is scalable, robust (tolerance of air and moisture), phosphine ligand-free, and compatible with a wide range of functionalities. These practical features make this reaction amenable for industry. A plethora of synthetically very useful halogenated anilines, which often cannot be prepared via other transition-metal-catalyzed aminations, are readily produced using this method. Particularly, the orthogonal reactivity between pinacol arylborates and aryl iodides is demonstrated. Preliminary deuterium-labeling studies reveal a redox-neutral ipso-protonation mechanism of this process, which will surely inspire the future development of this field. Overall, the exceptionally broad scope (47 examples) and reliability of this procedure, together with the wide availability of pinacol arylborates, make this chemistry a valuable addition to the existing methods for aniline synthesis.
Project description:Phospholipids are the most abundant component in lipid membranes and are essential for the structural and functional integrity of the cell. In eukaryotic cells, phospholipids are primarily synthesized de novo through the Kennedy pathway that involves multiple enzymatic processes. The terminal reaction is mediated by a group of cytidine-5'-diphosphate (CDP)-choline /CDP-ethanolamine-phosphotransferases (CPT/EPT) that use 1,2-diacylglycerol (DAG) and CDP-choline or CDP-ethanolamine to produce phosphatidylcholine (PC) or phosphatidylethanolamine (PE) that are the main phospholipids in eukaryotic cells. Here we present the structure of the yeast CPT1 in multiple substrate-bound states. Structural and functional analysis of these binding-sites reveal the critical residues for the DAG acyl-chain preference and the choline/ethanolamine selectivity. Additionally, we present the structure in complex with a potent inhibitor characterized in this study. The ensemble of structures allows us to propose the reaction mechanism for phospholipid biosynthesis by the family of CDP-alcohol phosphotransferases (CDP-APs).
Project description:Plane-wave density functional theory (PW-DFT) calculations have been used to investigate the direct amination of benzene catalyzed by a Ni(111) surface to explore the reaction intermediates and to understand the role of nickel in this reaction. Adsorption structures, sites, energetics, and proposed reaction pathways relevant to the amination of benzene on the Ni(111) surface were investigated using the spin-polarized slab model with the Perdew-Burke-Ernzerhof functional. The dispersion-corrected DFT-D3 was used to examine the effect of van der Waals interactions on the adsorption energy. Detailed discussion of the adsorption behaviors of NH, NH2, C6H5, C6H5NH2, and C6H5NH on the Ni(111) surface is provided. Imide and benzene were predicted to be the most predominant adsorbed species on the Ni(111) surface, and a reaction process involving a surface-bound anilide as an intermediate was predicted to be more thermodynamically favorable than other reaction pathways. The electronic interactions and vibrational frequencies of isolated and adsorbed molecules were also investigated.
Project description:This study investigated the material properties and hydration characteristics of calcium sulfoaluminate cement (CSA) based mortars cured under 3 different initial curing temperatures. Two CSA cements with different M-values were selected. Obtained experimental results of mechanical properties, dimensional stability, and heat release were explained by hydration characteristics from X-ray diffraction, thermal gravimetric analysis, porosimetry, and thermodynamic modeling. Decomposition of ettringite decreased compressive strength but re-formation of ettringite after additional curing at 30 °C helped to recover the strength in CSA cement with a high amount of calcium sulfate. CSA cement with a low amount of calcium sulfate which was designed to predominantly have monosulfate as the main hydration product, showed increased 1-day strength after higher temperature curing but this occurred was at the expense of decreased 28-day strength.
Project description:Secreted virulence factors like bacterial collagenases are conceptually attractive targets for fighting microbial infections. However, previous attempts to develop potent compounds against these metalloproteases failed to achieve selectivity against human matrix metalloproteinases (MMPs). Using a surface plasmon resonance-based screening complemented with enzyme inhibition assays, we discovered an N-aryl mercaptoacetamide-based inhibitor scaffold that showed sub-micromolar affinities toward collagenase H (ColH) from the human pathogen Clostridium histolyticum. Moreover, these inhibitors also efficiently blocked the homologous bacterial collagenases, ColG from C. histolyticum, ColT from C. tetani, and ColQ1 from the Bacillus cereus strain Q1, while showing negligible activity toward human MMPs-1, -2, -3, -7, -8, and -14. The most active compound displayed a more than 1000-fold selectivity over human MMPs. This selectivity can be rationalized by the crystal structure of ColH with this compound, revealing a distinct non-primed binding mode to the active site. The non-primed binding mode presented here paves the way for the development of selective broad-spectrum bacterial collagenase inhibitors with potential therapeutic application in humans.
Project description:Synthesis of ethanol from non-petroleum carbon resources via syngas (a mixture of H2 and CO) is an important but challenging research target. The current conversion of syngas to ethanol suffers from low selectivity or multiple processes with high energy consumption. Here, we report a high-selective conversion of syngas into ethanol by a triple tandem catalysis. An efficient trifunctional tandem system composed of potassium-modified ZnO-ZrO2, modified zeolite mordenite and Pt-Sn/SiC working compatibly in syngas stream in one reactor can afford ethanol with a selectivity of 90%. We demonstrate that the K+-ZnO-ZrO2 catalyses syngas conversion to methanol and the mordenite with eight-membered ring channels functions for methanol carbonylation to acetic acid, which is then hydrogenated to ethanol over the Pt-Sn/SiC catalyst. The present work offers an effective methodology leading to high selective conversion by decoupling a single-catalyst-based complicated and uncontrollable reaction into well-controlled multi-steps in tandem in one reactor.