Project description:Myeloid leukemia arises from leukemia stem cells (LSCs), which are resistant to standard chemotherapy agents and likely to be a major cause of drug-resistant disease and relapse. To investigate the in vivo properties of LSCs, we developed a mouse model in which the biologic features of human LSCs are closely mimicked. Primitive normal hematopoietic cells were modified to express the BCR/ABL and Nup98/HoxA9 translocation products, and a distinct LSC population, with the aberrant immunophenotype of lineage(-), Kit(+/-), Flt3(+), Sca(+), CD34(+), and CD150(-), was identified. In vivo studies were then performed to assess the response of LSCs to therapeutic insult. Treatment of animals with the ABL kinase inhibitor imatinib mesylate induced specific modulation of blasts and progenitor cells but not stem- cell populations, thereby recapitulating events inferred to occur in human chronic myelogenous leukemia (CML) patients. In addition, challenge of leukemic mice with total body irradiation was selectively toxic to normal hematopoietic stem cells (HSCs), suggesting that LSCs are resistant to apoptosis and/or senescence in vivo. Taken together, the system provides a powerful means by which the in vivo behavior of LSCs versus HSCs can be characterized and candidate treatment regimens can be optimized for maximal specificity toward primitive leukemia cells.
Project description:A key characteristic of hematopoietic stem cells (HSCs) is the ability to self-renew. Genetic deletion of ?-catenin during fetal HSC development leads to impairment of self-renewal while ?-catenin is dispensable in fully developed adult HSCs. Whether ?-catenin is required for maintenance of fully developed CML leukemia stem cells (LSCs) is unknown. Here, we use a conditional mouse model to show that deletion of ?-catenin after CML initiation does not lead to a significant increase in survival. However, deletion of ?-catenin synergizes with imatinib (IM) to delay disease recurrence after imatinib discontinuation and to abrogate CML stem cells. These effects can be mimicked by pharmacologic inhibition of ?-catenin via modulation of prostaglandin signaling. Treatment with the cyclooxygenase inhibitor indomethacin reduces ?-catenin levels and leads to a reduction in LSCs. In conclusion, inhibiting ?-catenin by genetic inactivation or pharmacologic modulation is an effective combination therapy with imatinib and targets CML stem cells.
Project description:Most tumors are heterogeneous and many cancers contain small population of highly tumorigenic and intrinsically drug resistant cancer stem cells (CSCs). Like normal stem cell, CSCs have the ability to self-renew and differentiate to other tumor cell types. They are believed to be a source for drug resistance, tumor recurrence and metastasis. CSCs often overexpress drug efflux transporters, spend most of their time in non-dividing G0 cell cycle state, and therefore, can escape the conventional chemotherapies. Thus, targeting CSCs is essential for developing novel therapies to prevent cancer relapse and emerging of drug resistance. Nanocarrier-based therapeutic agents (nanomedicines) have been used to achieve longer circulation times, better stability and bioavailability over current therapeutics. Recently, some groups have successfully applied nanomedicines to target CSCs to eliminate the tumor and prevent its recurrence. These approaches include 1) delivery of therapeutic agents (small molecules, siRNA, antibodies) that affect embryonic signaling pathways implicated in self-renewal and differentiation in CSCs, 2) inhibiting drug efflux transporters in an attempt to sensitize CSCs to therapy, 3) targeting metabolism in CSCs through nanoformulated chemicals and field-responsive magnetic nanoparticles and carbon nanotubes, and 4) disruption of multiple pathways in drug resistant cells using combination of chemotherapeutic drugs with amphiphilic Pluronic block copolymers. Despite clear progress of these studies the challenges of targeting CSCs by nanomedicines still exist and leave plenty of room for improvement and development. This review summarizes biological processes that are related to CSCs, overviews the current state of anti-CSCs therapies, and discusses state-of-the-art nanomedicine approaches developed to kill CSCs.
Project description:BCR-ABL tyrosine kinase inhibitors (TKI) fail to eliminate quiescent leukemia stem cells (LSC) in chronic myelogenous leukemia (CML). Thus, strategies targeting LSC are required to achieve cure. We show that the NAD(+)-dependent deacetylase SIRT1 is overexpressed in human CML LSC. Pharmacological inhibition of SIRT1 or SIRT1 knockdown increased apoptosis in LSC of chronic phase and blast crisis CML and reduced their growth in vitro and in vivo. SIRT1 effects were enhanced in combination with the BCR-ABL TKI imatinib. SIRT1 inhibition increased p53 acetylation and transcriptional activity in CML progenitors, and the inhibitory effects of SIRT1 targeting on CML cells depended on p53 expression and acetylation. Activation of p53 via SIRT1 inhibition represents a potential approach to target CML LSC.
Project description:MethodsWe used a patient-specific induced pluripotent stem cell (iPSC) line treated with the mutagenic agent N-ethyl-N-nitrosourea (ENU). Genomic instability was validated using γ-H2AX and micronuclei assays and CGH array for genomic events.ResultsAn increased number of progenitors (x5-Fold), which proliferated in liquid cultures with a blast cell morphology, was observed in the mutagenized condition as compared to the unmutagenized one. CGH array performed for both conditions in two different time points reveals several cancer genes in the ENU-treated condition, some known to be altered in leukemia (BLM, IKZF1, NCOA2, ALK, EP300, ERG, MKL1, PHF6 and TET1). Transcriptome GEO-dataset GSE4170 allowed us to associate 125 of 249 of the aberrations that we detected in CML-iPSC with the CML progression genes already described during progression from chronic and AP to BC. Among these candidates, eleven of them have been described in CML and related to tyrosine kinase inhibitor resistance and genomic instability.ConclusionsThese results demonstrated that we have generated, for the first time to our knowledge, an in vitro genetic instability model, reproducing genomic events described in patients with BC.
Project description:Curative effects of graft-versus-leukemia-based therapies such as donor lymphocyte infusion (DLI) for chronic myelogenous leukemia (CML) may result from immunologic ablation of self-renewing CML progenitor cells. Patients who achieved durable remissions after DLI developed a significant B-cell lymphocytosis after treatment, which did not occur in patients who were unresponsive to DLI. In this study, we identified antigen targets of this B-cell response by probing two immunoproteomic platforms with plasma immunoglobulins from seven CML patients with clinically apparent graft-versus-leukemia responses after DLI. In total, 62 antigens elicited greater reactivity from post-DLI versus pre-DLI plasma. Microarray analysis revealed that >70% of the antigens were expressed in CML CD34(+) cells, suggesting that expression in malignant progenitor cells is a feature common to antibody targets of DLI. We confirmed elevated expression of three target antigens (RAB38, TBCE, and DUSP12) in CML that together consistently elicited antibody responses in 18 of 21 of an additional cohort of CML patients with therapeutic responses, but not in normal donors and rarely in non-CML patients. In summary, immunologic targets of curative DLI responses include multiple antigens on CML progenitor cells, identifying them as potential immunogens for vaccination and/or monitoring of immunotherapeutics designed to eliminate myeloid leukemia stem cells.
Project description:In chronic myelogenous leukemia (CML), treatment with tyrosine kinase inhibitors (TKI) is unable to eradicate leukemic stem cells (LSC). Polymethine dye-functionalized nanoparticles can be internalized by specific cell types using transmembrane carrier proteins. In this study we investigated the uptake behavior of various polymethine dyes on leukemia cell lines and searched for carrier proteins that guide dye transport using RNA interference. The results show that the uptake of DY-635 is dependent on organic anion transport protein 1B3 (OATP1B3) in CML cells and immature myeloid precursor cells of CML patients. In contrast to nonspecific poly(lactide-co-glycolic acid) (PLGA) nanoparticle constructs, DY-635-functionalization of nanoparticles led to an uptake in CML cells. Investigation of these nanoparticles on bone marrow of CML patients showed a preferred uptake in LSC. The transcription of OATP1B3 is known to be induced under hypoxic conditions via the hypoxia-inducing factor 1 alpha (HIF1α), thus also in the stem cells niche. Since these cells have the potential to repopulate the bone marrow after CML treatment discontinuation, eliminating them by means of drug-loaded DY-635-functionalized PLGA nanoparticles deployed as a selective delivery system to LSC is highly relevant to the ongoing search for curative treatment options for CML patients.
Project description:Although chronic myeloid leukemia (CML) is now defined on the basis of the presence of the BCR-ABL1 fusion gene, which may or may not be the initial genetic event that triggers the inappropriate expansion of the myeloid cell mass, CML, similar to other leukemias, is in fact clinically heterogeneous. The biological basis for this heterogeneity is unknown. Here, we summarize some of the data illustrating this heterogeneity and speculate about possible mechanisms that may cause it. It could, for example, be intrinsic in the leukemia stem cell or could be related to some aspect of the patient's response to the leukemia.
Project description:Although it has been demonstrated that visual and auditory stimuli can be recalled decades after the initial exposure, previous studies have generally not ruled out the possibility that the material may have been seen or heard during the intervening period. Evidence shows that reactivations of a long-term memory trace play a role in its update and maintenance. In the case of remote or very long-term memories, it is most likely that these reactivations are triggered by the actual re-exposure to the stimulus. In this study we decided to explore whether it is possible to recall stimuli that could not have been re-experienced in the intervening period. We tested the ability of French participants (N = 34, 31 female) to recall 50 TV programs broadcast on average for the last time 44 years ago (from the 60's and early 70's). Potential recall was elicited by the presentation of short audiovisual excerpts of these TV programs. The absence of potential re-exposure to the material was strictly controlled by selecting TV programs that have never been rebroadcast and were not available in the public domain. Our results show that six TV programs were particularly well identified on average across the 34 participants with a median percentage of 71.7% (SD = 13.6, range: 48.5-87.9%). We also obtained 50 single case reports with associated information about the viewing of 23 TV programs including the 6 previous ones. More strikingly, for two cases, retrieval of the title was made spontaneously without the need of a four-proposition choice. These results suggest that re-exposures to the stimuli are not necessary to maintain a memory for a lifetime. These new findings raise fundamental questions about the underlying mechanisms used by the brain to store these very old sensory memories.
Project description:Chronic myeloid leukemia (CML) results from hematopoietic stem cell transformation by the BCR-ABL kinase. Despite the success of BCR-ABL tyrosine kinase inhibitors (TKIs) in treating CML patients, leukemia stem cells (LSCs) resist elimination and persist as a major barrier to cure. Previous studies suggest that overexpression of the sirtuin 1 (SIRT1) deacetylase may contribute to LSC maintenance in CML. Here, by genetically deleting SIRT1 in transgenic CML mice, we definitively demonstrated an important role for SIRT1 in leukemia development. We identified a previously unrecognized role for SIRT1 in mediating increased mitochondrial oxidative phosphorylation in CML LSCs. We showed that mitochondrial alterations were kinase independent and that TKI treatment enhanced inhibition of CML hematopoiesis in SIRT1-deleted mice. We further showed that the SIRT1 substrate PGC-1α contributed to increased oxidative phosphorylation and TKI resistance in CML LSCs. These results reveal an important role for SIRT1 and downstream signaling mechanisms in altered mitochondrial respiration in CML LSCs.