Unknown

Dataset Information

0

Answer ALS, a large-scale resource for sporadic and familial ALS combining clinical and multi-omics data from induced pluripotent cell lines.


ABSTRACT: Answer ALS is a biological and clinical resource of patient-derived, induced pluripotent stem (iPS) cell lines, multi-omic data derived from iPS neurons and longitudinal clinical and smartphone data from over 1,000 patients with ALS. This resource provides population-level biological and clinical data that may be employed to identify clinical-molecular-biochemical subtypes of amyotrophic lateral sclerosis (ALS). A unique smartphone-based system was employed to collect deep clinical data, including fine motor activity, speech, breathing and linguistics/cognition. The iPS spinal neurons were blood derived from each patient and these cells underwent multi-omic analytics including whole-genome sequencing, RNA transcriptomics, ATAC-sequencing and proteomics. The intent of these data is for the generation of integrated clinical and biological signatures using bioinformatics, statistics and computational biology to establish patterns that may lead to a better understanding of the underlying mechanisms of disease, including subgroup identification. A web portal for open-source sharing of all data was developed for widespread community-based data analytics.

SUBMITTER: Baxi EG 

PROVIDER: S-EPMC8825283 | biostudies-literature | 2022 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Answer ALS, a large-scale resource for sporadic and familial ALS combining clinical and multi-omics data from induced pluripotent cell lines.

Baxi Emily G EG   Thompson Terri T   Li Jonathan J   Kaye Julia A JA   Lim Ryan G RG   Wu Jie J   Ramamoorthy Divya D   Lima Leandro L   Vaibhav Vineet V   Matlock Andrea A   Frank Aaron A   Coyne Alyssa N AN   Landin Barry B   Ornelas Loren L   Mosmiller Elizabeth E   Thrower Sara S   Farr S Michelle SM   Panther Lindsey L   Gomez Emilda E   Galvez Erick E   Perez Daniel D   Meepe Imara I   Lei Susan S   Mandefro Berhan B   Trost Hannah H   Pinedo Louis L   Banuelos Maria G MG   Liu Chunyan C   Moran Ruby R   Garcia Veronica V   Workman Michael M   Ho Richie R   Wyman Stacia S   Roggenbuck Jennifer J   Harms Matthew B MB   Stocksdale Jennifer J   Miramontes Ricardo R   Wang Keona K   Venkatraman Vidya V   Holewenski Ronald R   Sundararaman Niveda N   Pandey Rakhi R   Manalo Danica-Mae DM   Donde Aneesh A   Huynh Nhan N   Adam Miriam M   Wassie Brook T BT   Vertudes Edward E   Amirani Naufa N   Raja Krishna K   Thomas Reuben R   Hayes Lindsey L   Lenail Alex A   Cerezo Aianna A   Luppino Sarah S   Farrar Alanna A   Pothier Lindsay L   Prina Carolyn C   Morgan Todd T   Jamil Arish A   Heintzman Sarah S   Jockel-Balsarotti Jennifer J   Karanja Elizabeth E   Markway Jesse J   McCallum Molly M   Joslin Ben B   Alibazoglu Deniz D   Kolb Stephen S   Ajroud-Driss Senda S   Baloh Robert R   Heitzman Daragh D   Miller Tim T   Glass Jonathan D JD   Patel-Murray Natasha Leanna NL   Yu Hong H   Sinani Ervin E   Vigneswaran Prasha P   Sherman Alexander V AV   Ahmad Omar O   Roy Promit P   Beavers Jay C JC   Zeiler Steven S   Krakauer John W JW   Agurto Carla C   Cecchi Guillermo G   Bellard Mary M   Raghav Yogindra Y   Sachs Karen K   Ehrenberger Tobias T   Bruce Elizabeth E   Cudkowicz Merit E ME   Maragakis Nicholas N   Norel Raquel R   Van Eyk Jennifer E JE   Finkbeiner Steven S   Berry James J   Sareen Dhruv D   Thompson Leslie M LM   Fraenkel Ernest E   Svendsen Clive N CN   Rothstein Jeffrey D JD  

Nature neuroscience 20220203 2


Answer ALS is a biological and clinical resource of patient-derived, induced pluripotent stem (iPS) cell lines, multi-omic data derived from iPS neurons and longitudinal clinical and smartphone data from over 1,000 patients with ALS. This resource provides population-level biological and clinical data that may be employed to identify clinical-molecular-biochemical subtypes of amyotrophic lateral sclerosis (ALS). A unique smartphone-based system was employed to collect deep clinical data, includi  ...[more]

Similar Datasets

| S-EPMC3873619 | biostudies-literature
| S-EPMC3170425 | biostudies-literature
| S-EPMC9060483 | biostudies-literature
| S-EPMC3338985 | biostudies-literature
| S-EPMC3951532 | biostudies-literature
| S-EPMC3657168 | biostudies-literature
| S-EPMC2707108 | biostudies-literature
| PRJNA647703 | ENA
| PRJNA933342 | ENA
| S-EPMC3890817 | biostudies-literature