Project description:A pathogenic scotochromogenic Mycobacterium xenopi-like organism was isolated from the lung of an immunocompetent young woman. This pathogen caused severe bilateral cavitary lung disease, making two surgical interventions necessary after years of chronic disease. This case prompted us to characterize this mycobacterium by a polyphasic taxonomic approach. The isolate contained chemotaxonomic markers which were typical for the genus Mycobacterium, i.e., the meso isomer of 2,6-diaminopimelic acid, arabinose, and galactose as diagnostic whole-cell sugars, MK-9(H(2)) as the principal isoprenoid quinone, a mycolic acid pattern of alpha-mycolates, ketomycolates, and wax ester mycolates, unbranched saturated and unsaturated fatty acids plus a significant amount of tuberculostearic acid, and small amounts of a C(20:0) secondary alcohol. On the basis of its unique 16S rRNA and 16S-23S spacer gene sequences, we propose that the isolate should be assigned to a new species, Mycobacterium heckeshornense. This novel species is phylogenetically closely related to M. xenopi. The type strain of M. heckeshornense is strain S369 (DSM 44428(T)). The GenBank accession number of the 16S rRNA gene of M. heckeshornense is AF174290.
Project description:A nonpigmented rapidly growing mycobacterium was isolated from wound liquid outflow, bone tissue biopsy, and excised skin tissue from a 31-year-old woman who suffered an accidental open right tibia fracture and prolonged stay in a river. The three isolates grew in 3 days at 24 to 37 degrees C. 16S rRNA sequence analyses over 1,483 bp showed that they were identical and shared 99.7% (4-bp difference) sequence similarity with that of Mycobacterium porcinum, the most closely related species. Partial rpoB (723 bp) sequence analyses showed that the isolates shared 97.0% sequence similarity with that of M. porcinum. Further polyphasic approaches, including biochemical tests, antimicrobial susceptibility analyses, and hsp65, sodA, and recA gene sequence analysis, as well as % G+C determination and cell wall fatty acid composition analysis supported the evidence that these isolates were representative of a new species. Phylogenetic analyses showed the close relationship with M. porcinum in the Mycobacterium fortuitum group. The isolates were susceptible to most antibiotics and exhibited evidence for penicillinase activity, in contrast to M. porcinum. We propose the name Mycobacterium conceptionense sp. nov. for this new species associated with posttraumatic osteitis. The type strain is D16(T) (equivalent to CIP 108544(T) and CCUG 50187(T)).
Project description:A distinct group of slowly growing mycobacteria was identified on the basis of growth characteristics, biochemical and lipid profiles, and nucleic acid analyses. The isolates showed growth at 22 to 37 degrees C, yellow pigmentation, and negative tests for Tween 80 hydrolysis, nicotinic acid, nitrate reductase, and urease; tests for arylsulfatase, pyrazinamidase, and heat-stable catalase were variable. Analysis of cellular fatty acids by gas-liquid chromatography and mycolic acids by thin-layer chromatography and high-performance liquid chromatography indicated a distinctive pattern which was unlike those of other species. Determination of the 16S rRNA gene sequence showed a unique sequence closely related to Mycobacterium simiae and M. genavense. On the basis of DNA homology studies, we suggest that these organisms are representatives of a novel species, for which the name M. lentiflavum sp. nov. is proposed.
Project description:Two novel strains AV382 and AV436 were isolated from a submerged industrial bioreactor for production of apple cider vinegar in Kopivnik (Slovenia). Both strains showed very high (≥98.2%) 16S rRNA gene sequence similarities with Komagataeibacter species, but lower 16S-23S rRNA gene internal transcribed spacer (ITS). The highest similarity of the 16S-23S rRNA gene ITS of AV382 was to Komagataeibacter kakiaceti LMG 26206T (91.6%), of AV436 to Komagataeibacter xylinus LMG 1515T (93.9%). The analysis of genome sequences confirmed that AV382 is the most closely related to K. kakiaceti (ANIb 88.2%) and AV436 to K. xylinus (ANIb 91.6%). Genome to genome distance calculations exhibit for both strains ≤47.3% similarity to all type strains of the genus Komagataeibacter. The strain AV382 can be differentiated from its closest relatives K. kakiaceti and Komagataeibacter saccharivorans by its ability to form 2-keto and 5-keto-D-gluconic acids from glucose, incapability to grow in the presence of 30% glucose, formation of C19:0 cyclo ω8c fatty acid and tolerance of up to 5% acetic acid in the presence of ethanol. The strain AV436 can be differentiated from its closest relatives K. xylinus, Komagataeibacter sucrofermentans, and Komagataeibacter nataicola by its ability to form 5-keto-D-gluconic acid, growth on 1-propanol, efficient synthesis of cellulose, and tolerance to up to 5% acetic acid in the presence ethanol. The major fatty acid of both strains is C18:1ω7c. Based on a combination of phenotypic, chemotaxonomic and phylogenetic features, the strains AV382T and AV436T represent novel species of the genus Komagataeibacter, for which the names Komagataeibactermelaceti sp. nov. and Komagataeibacter melomenusus are proposed, respectively. The type strain of Komagataeibacter melaceti is AV382T (= ZIM B1054T = LMG 31303T = CCM 8958T) and of Komagataeibacter melomenusus AV436T (= ZIM B1056T = LMG 31304T = CCM 8959T).
Project description:Arthrobacter spp. are very widely distributed in the environment (e.g., soil) but have not been described as causing disease in humans. Over a 6-year period, two reference laboratories isolated or received 11 strains which were eventually identified as belonging to the genus Arthrobacter. These strains had been initially identified as Centers for Disease Control and Prevention coryneform group B-1 and B-3 bacteria (whitishgrayish colonies of 2 mm or greater in diameter after 24 h of incubation, respiratory metabolism, absent or weak acid production from sugars, and hydrolysis of gelatin). However, chemotaxonomic investigations revealed lysine as the diamino acid of the cell wall and the presence of branched cellular fatty acids (with anteiso-pentadecanoic acid predominating) which was compatible with an assignment of the 11 isolates to the genus Arthrobacter only. Peptidoglycan and 16S rRNA gene sequence analyses demonstrated that three of the strains studied were representatives of a new Arthrobacter species for which the name Arthrobacter cumminsii sp. nov. is proposed and that one other strain represented a second new Arthrobacter species for which the name Arthrobacter woluwensis sp. nov. is proposed. This report is the first on the isolation of Arthrobacter spp. from clinical specimens.
Project description:Bacteria of the family Geobacteraceae are particularly common and deeply involved in many biogeochemical processes in terrestrial and freshwater environments. As part of a study to understand biogeochemical cycling in freshwater sediments, three iron-reducing isolates, designated as Red96T, Red100T, and Red88T, were isolated from the soils of two paddy fields and pond sediment located in Japan. The cells were Gram-negative, strictly anaerobic, rod-shaped, motile, and red-pigmented on agar plates. Growth of these three strains was coupled to the reduction of Fe(III)-NTA, Fe(III) citrate, and ferrihydrite with malate, methanol, pyruvate, and various organic acids and sugars serving as alternate electron donors. Phylogenetic analysis based on the housekeeping genes (16S rRNA gene, gyrB, rpoB, nifD, fusA, and recA) and 92 concatenated core genes indicated that all the isolates constituted a coherent cluster within the family Geobacteraceae. Genomic analyses, including average nucleotide identity and DNA-DNA hybridization, clearly differentiated the strains Red96T, Red100T, and Red88T from other species in the family Geobacteraceae, with values below the thresholds for species delineation. Along with the genomic comparison, the chemotaxonomic features further helped distinguish the three isolates from each other. In addition, the lower values of average amino acid identity and percentage of conserved protein, as well as biochemical differences with their relatives, indicated that the three strains represented a novel genus in the family Geobacteraceae. Hence, we concluded that strains Red96T, Red100T, and Red88T represented three novel species of a novel genus in the family Geobacteraceae, for which the names Oryzomonas japonicum gen. nov., sp. nov., Oryzomonas sagensis sp. nov., and Oryzomonas ruber sp. nov. are proposed, with type strains Red96T (= NBRC 114286T = MCCC 1K04376T), Red100T (= NBRC 114287T = MCCC 1K04377T), and Red88T (= MCCC 1K03694T = JCM 33033T), respectively.
Project description:Mycobacterium heckeshornense is a slow-growing nontuberculous mycobacterium first characterized in 2000. It is reported to cause lung disease and tenosynovitis. We report a case of isolated massive axillary lymphadenopathy in an elderly woman, where histology showed necrotizing granulomata and M. heckeshornense was isolated as the causative organism.
Project description:Blood is precious tissue that is normally sterile. With the aim of diagnosing the cause of bacteremia, three bacterial strains were isolated from three different individuals. Strains Marseille-P7157T and Marseille-Q2854T are Gram-stain positive, non-spore-forming rod-shaped bacteria, while strain Marseille-P8049T is a Gram-stain negative, motile, non-spore-forming and rod-shaped bacterium. The major fatty acids found (>30%) were hexadecanoic acid for strain Marseille-P8049T and 12-methyl tetradecanoic acid for both strains Marseille-P7157T and Marseille-P2854T. The 16S rRNA gene sequence analysis shows that strains Marseille-P8049 and Marseille-Q2854T have sequence similarity of 96.8%, 99.04%, and 98.3% with Acinetobacter ursingii strain LUH3792 (NR_025392.1), Gulosibacter faecalis strain B187 (NR_041812.1), and Schaalia canis strain CCUG 41706 (NR_025366.1), respectively. In addition, strains Marseille-Q2854T, Marseille-P8049T and Marseille-P7157T shared with their closely related species cited above the following DDH values: 19.5%, 24.4%, and 20.2%, respectively. Based on these phenotypic and genomic findings, we consider that strains Marseille-P8049T (= CSUR P8049 = CECT 30350), Marseille-P2854T ( = CSUR Q2854 = CECT 30120) and Marseille-P7157T ( = CSUR P7157 = CECT 30048) are new bacterial species, for which the names Acinetobacter ihumii sp. nov., Microbacterium ihumii sp. nov., and Gulosibacter massiliensis sp. nov., are proposed.
Project description:Klebsiella oxytoca causes opportunistic human infections and post-antibiotic haemorrhagic diarrhea. This Enterobacteriaceae species is genetically heterogeneous and is currently subdivided into seven phylogroups (Ko1 to Ko4 and Ko6 to Ko8). Here we investigated the taxonomic status of phylogroups Ko3 and Ko4. Genomic sequence-based phylogenetic analyses demonstrate that Ko3 and Ko4 formed well-defined sequence clusters related to, but distinct from, Klebsiella michiganensis (Ko1), K. oxytoca (Ko2), K. huaxiensis (Ko8), and K. grimontii (Ko6). The average nucleotide identity (ANI) of Ko3 and Ko4 were 90.7% with K. huaxiensis and 95.5% with K. grimontii, respectively. In addition, three strains of K. huaxiensis, a species so far described based on a single strain from a urinary tract infection patient in China, were isolated from cattle and human feces. Biochemical and MALDI-ToF mass spectrometry analysis allowed differentiating Ko3, Ko4, and Ko8 from the other K. oxytoca species. Based on these results, we propose the names Klebsiella spallanzanii for the Ko3 phylogroup, with SPARK_775_C1T (CIP 111695T and DSM 109531T) as type strain, and Klebsiella pasteurii for Ko4, with SPARK_836_C1T (CIP 111696T and DSM 109530T) as type strain. Strains of K. spallanzanii were isolated from human urine, cow feces, and farm surfaces, while strains of K. pasteurii were found in fecal carriage from humans, cows, and turtles.
Project description:Thirteen novel planctomycetal strains were isolated from five different aquatic sampling locations. These comprise the hydrothermal vent system close to Panarea Island (Italy), a biofilm on the surface of kelp at Monterey Bay (CA, USA), sediment and algae on Mallorca Island (Spain) and Helgoland Island (Germany), as well as a seawater aquarium in Braunschweig, Germany. All strains were shown to belong to the genus Gimesia. Their genomes cover a size range from 7.22 to 8.29 Mb and have a G+C content between 45.1 and 53.7%. All strains are mesophilic (Topt 26-33 °C) with generation times between 12 and 32 h. Analysis of fatty acids yielded palmitic acid (16:0) and a fatty acid with the equivalent chain length of 15.817 as major compounds. While five of the novel strains belong to the already described species Gimesia maris and Gimesia chilikensis, the other strains belong to novel species, for which we propose the names Gimesia alba (type strain Pan241wT = DSM 100744T = LMG 31345T = CECT 9841T = VKM B-3430T), Gimesia algae (type strain Pan161T = CECT 30192T = STH00943T = LMG 29130T), Gimesia aquarii (type strain V144T = DSM 101710T = VKM B-3433T), Gimesia fumaroli (type strain Enr17T = DSM 100710T = VKM B-3429T) and Gimesia panareensis (type strain Enr10T = DSM 100416T = LMG 29082T). STH numbers refer to the Jena Microbial Resource Collection (JMRC).