Unknown

Dataset Information

0

Methods for statistical fine-mapping and their applications to auto-immune diseases.


ABSTRACT: Although genome-wide association studies (GWAS) have identified thousands of loci in the human genome that are associated with different traits, understanding the biological mechanisms underlying the association signals identified in GWAS remains challenging. Statistical fine-mapping is a method aiming to refine GWAS signals by evaluating which variant(s) are truly causal to the phenotype. Here, we review the types of statistical fine-mapping methods that have been widely used to date, with a focus on recently developed functionally informed fine-mapping (FIFM) methods that utilize functional annotations. We then systematically review the applications of statistical fine-mapping in autoimmune disease studies to highlight the value of statistical fine-mapping in biological contexts.

SUBMITTER: Wang QS 

PROVIDER: S-EPMC8837575 | biostudies-literature | 2022 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Methods for statistical fine-mapping and their applications to auto-immune diseases.

Wang Qingbo S QS   Huang Hailiang H  

Seminars in immunopathology 20220118 1


Although genome-wide association studies (GWAS) have identified thousands of loci in the human genome that are associated with different traits, understanding the biological mechanisms underlying the association signals identified in GWAS remains challenging. Statistical fine-mapping is a method aiming to refine GWAS signals by evaluating which variant(s) are truly causal to the phenotype. Here, we review the types of statistical fine-mapping methods that have been widely used to date, with a fo  ...[more]

Similar Datasets

| S-EPMC4801796 | biostudies-other
| S-EPMC7374116 | biostudies-literature
| S-EPMC6642100 | biostudies-literature
| S-EPMC5843356 | biostudies-literature
| S-EPMC5500132 | biostudies-literature
| S-EPMC6050137 | biostudies-literature
| S-EPMC10616627 | biostudies-literature
| S-EPMC4214605 | biostudies-literature
| S-EPMC3076696 | biostudies-literature
| S-EPMC4387535 | biostudies-literature