Unknown

Dataset Information

0

The mechanisms of catalysis and ligand binding for the SARS-CoV-2 NSP3 macrodomain from neutron and X-ray diffraction at room temperature.


ABSTRACT: The NSP3 macrodomain of SARS CoV 2 (Mac1) removes ADP-ribosylation post-translational modifications, playing a key role in the immune evasion capabilities of the virus responsible for the COVID-19 pandemic. Here, we determined neutron and X-ray crystal structures of the SARS-CoV-2 NSP3 macrodomain using multiple crystal forms, temperatures, and pHs, across the apo and ADP-ribose-bound states. We characterize extensive solvation in the Mac1 active site, and visualize how water networks reorganize upon binding of ADP-ribose and non-native ligands, inspiring strategies for displacing waters to increase potency of Mac1 inhibitors. Determining the precise orientations of active site water molecules and the protonation states of key catalytic site residues by neutron crystallography suggests a catalytic mechanism for coronavirus macrodomains distinct from the substrate-assisted mechanism proposed for human MacroD2. These data provoke a re-evaluation of macrodomain catalytic mechanisms and will guide the optimization of Mac1 inhibitors.

SUBMITTER: Correy GJ 

PROVIDER: S-EPMC8845425 | biostudies-literature | 2022 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

The mechanisms of catalysis and ligand binding for the SARS-CoV-2 NSP3 macrodomain from neutron and X-ray diffraction at room temperature.

Correy Galen J GJ   Kneller Daniel W DW   Phillips Gwyndalyn G   Pant Swati S   Russi Silvia S   Cohen Aina E AE   Meigs George G   Holton James M JM   Gahbauer Stefan S   Thompson Michael C MC   Ashworth Alan A   Coates Leighton L   Kovalevsky Andrey A   Meilleur Flora F   Fraser James S JS  

bioRxiv : the preprint server for biology 20220209


The NSP3 macrodomain of SARS CoV 2 (Mac1) removes ADP-ribosylation post-translational modifications, playing a key role in the immune evasion capabilities of the virus responsible for the COVID-19 pandemic. Here, we determined neutron and X-ray crystal structures of the SARS-CoV-2 NSP3 macrodomain using multiple crystal forms, temperatures, and pHs, across the apo and ADP-ribose-bound states. We characterize extensive solvation in the Mac1 active site, and visualize how water networks reorganize  ...[more]

Similar Datasets

| S-EPMC9140965 | biostudies-literature
| S-EPMC3274385 | biostudies-literature
| S-EPMC3382516 | biostudies-literature
| S-EPMC9813973 | biostudies-literature
| S-EPMC7538425 | biostudies-literature
| S-EPMC3732582 | biostudies-literature
| S-EPMC4775160 | biostudies-literature
| S-EPMC4631597 | biostudies-literature
| S-EPMC8420765 | biostudies-literature
| S-EPMC10397204 | biostudies-literature