Project description:GoalWe aimed to assess the incidence rate of coronavirus disease 2019 (COVID-19) in vaccinated versus unvaccinated solid organ transplant recipients (SOTR) at our center.MethodsWe abstracted the following clinical data from our transplant registry from 1/1/2021 to 6/2/2021: demographics, details of COVID-19 vaccination, incidence of COVID-19, and related mortality. We calculated incidence of symptomatic COVID-19 per 1000/person days at risk and incidence rate ratio (IRR).ResultsAmong 2151 SOTRs, 912 were fully vaccinated, and 1239 were controls (1151 unvaccinated, 88 partially vaccinated). Almost 70% of vaccinated subjects received the mRNA-1273 vaccine. There were 65 cases of COVID-19 that occurred during the study period - four occurred among fully vaccinated individuals and 61 among controls (including two in partially vaccinated individuals). Incidence rate for COVID-19 was 0.065 (95% CI 0.024-0.17) per 1000 person days in vaccinated versus 0.34 (95% CI 0.26-0.44) per 1000/person days in the control group; IRR was 0.19 (95% CI 0.049 -0.503, p < 0.005). There were no COVID-19 related deaths in the four breakthrough infections and two of 61 (3.3%) among controls.ConclusionWe demonstrate real world clinical effectiveness of COVID-19 vaccination in SOTRs with an almost 80% reduction in the incidence of symptomatic COVID-19 versus unvaccinated SOTRs during the same time.
Project description:BackgroundCOVID-19 disease in kidney transplant (KT) recipients is associated with increased morbidity, mortality, and hospitalization rates. Unfortunately, KT recipients also have a reduced response to SARS-CoV-2 immunization. The primary aim of this study was to assess immunologic response to SARS-CoV-2 mRNA vaccines in pediatric kidney transplant recipients 12-18 years of age. Secondary aims were to assess response rates following a third immunization and determine factors that influence immunization response.MethodsPediatric KT recipients in a single tertiary center received SARS-CoV-2 mRNA vaccination as per local protocol. SARS-CoV-2 immunoglobulin (IgG) was measured following second and/or third vaccination. Demographics including patient factors (age, gender, and underlying disease), transplant factors (time and type of transplant), and immunosuppression (induction, maintenance, and immunomodulatory therapies such as IVIG) were collected from the medical records.ResultsOf 20 participants, 10 (50%) responded following a two-dose vaccine schedule, which increased to 15 (75%) after three doses. Maintenance immunosuppression affected immunologic response, with azathioprine demonstrating a higher rate of response to vaccine compared to mycophenolate (100% vs. 38%, p = 0.04). Increasing prednisolone dose had a negative impact on immunologic response (0.01 mg/kg/day increase: OR 1.60 95% CI 1.01 to 2.57). Tacrolimus dose and trough levels, age, time post-transplant, underlying disease, and other immunosuppression did not impact immunologic response.ConclusionsPediatric KT recipients had similar response rates following SARS-CoV-2 immunization as adult KT recipients. Immunologic response improved following a third immunization. Choice of antimetabolite and prednisolone dosing influenced the rate of response. A higher resolution version of the Graphical abstract is available as Supplementary Information.
Project description:Solid organ transplant (SOT) recipients are at greater risk of coronavirus disease 2019 (COVID-19) and have attenuated response to vaccinations. In the present meta-analysis, we aimed to evaluate the serologic response to the COVID-19 vaccine in SOT recipients. A search of electronic databases was conducted to identify SOT studies that reported the serologic response to COVID-19 vaccination. We analyzed 44 observational studies including 6158 SOT recipients. Most studies were on mRNA vaccination (mRNA-1273 or BNT162b2). After a single and two doses of vaccine, serologic response rates were 8.6% (95% CI 6.8-11.0) and 34.2% (95% CI 30.1-38.7), respectively. Compared to controls, response rates were lower after a single and two doses of vaccine (OR 0.0049 [95% CI 0.0021-0.012] and 0.0057 [95% CI 0.0030-0.011], respectively). A third dose improved the rate to 65.6% (95% CI 60.4-70.2), but in a subset of patients who had not achieved a response after two doses, it remained low at 35.7% (95% CI 21.2-53.3). In summary, only a small proportion of SOT recipients achieved serologic response to the COVID-19 mRNA vaccine, and that even the third dose had an insufficient response. Alternative strategies for prophylaxis in SOT patients need to be developed. Key Contribution: In this meta-analysis that included 6158 solid organ transplant recipients, the serologic response to the COVID-19 vaccine was extremely low after one (8.6%) and two doses (34.2%). The third dose of the vaccine improved the rate only to 66%, and in the subset of patients who had not achieved a response after two doses, it remained low at 36%. The results of our study suggest that a significant proportion of solid organ transplant recipients are unable to achieve a sufficient serologic response after completing not only the two series of vaccination but also the third booster dose. There is an urgent need to develop strategies for prophylaxis including modified vaccine schedules or the use of monoclonal antibodies in this vulnerable patient population.
Project description:Although SARS-CoV-2 mRNA vaccination has been shown to be safe and effective in the general population, immunocompromised solid organ transplant recipients (SOTRs) were reported to have impaired immune responses after one or two doses of vaccine. In this study, we examined humoral responses induced after the second and the third dose of mRNA vaccine in different SOTR (kidney, liver, lung, and heart). Compared to a cohort of SARS-CoV-2 naïve immunocompetent health care workers (HCWs), the second dose induced weak humoral responses in SOTRs, except for the liver recipients. The third dose boosted these responses but they did not reach the same level as in HCW. Interestingly, although the neutralizing activity against Delta and Omicron variants remained very low after the third dose, Fc-mediated effector functions in SOTR reached similar levels as in the HCW cohort. Whether these responses will suffice to protect SOTR from severe outcome remains to be determined.
Project description:BackgroundWe aimed to analyze the humoral and cellular response to standard and booster (additional doses) COVID-19 vaccination in solid organ transplantation (SOT) and the risk factors involved for an impaired response.MethodsWe did a systematic review and meta-analysis of studies published up until January 11, 2022, that reported immunogenicity of COVID-19 vaccine among SOT. The study is registered with PROSPERO, number CRD42022300547.ResultsOf the 1527 studies, 112 studies, which involved 15391 SOT and 2844 healthy controls, were included. SOT showed a low humoral response (effect size [ES]: 0.44 [0.40-0.48]) in overall and in control studies (log-Odds-ratio [OR]: -4.46 [-8.10 to -2.35]). The humoral response was highest in liver (ES: 0.67 [0.61-0.74]) followed by heart (ES: 0.45 [0.32-0.59]), kidney (ES: 0.40 [0.36-0.45]), kidney-pancreas (ES: 0.33 [0.13-0.53]), and lung (0.27 [0.17-0.37]). The meta-analysis for standard and booster dose (ES: 0.43 [0.39-0.47] vs. 0.51 [0.43-0.54]) showed a marginal increase of 18% efficacy. SOT with prior infection had higher response (ES: 0.94 [0.92-0.96] vs. ES: 0.40 [0.39-0.41]; p-value < .01). The seroresponse with mRNA-12723 mRNA was highest 0.52 (0.40-0.64). Mycophenolic acid (OR: 1.42 [1.21-1.63]) and Belatacept (OR: 1.89 [1.3-2.49]) had highest risk for nonresponse. SOT had a parallelly decreased cellular response (ES: 0.42 [0.32-0.52]) in overall and control studies (OR: -3.12 [-0.4.12 to -2.13]).InterpretationOverall, SOT develops a suboptimal response compared to the general population. Immunosuppression including mycophenolic acid, belatacept, and tacrolimus is associated with decreased response. Booster doses increase the immune response, but further upgradation in vaccination strategy for SOT is required.