Unknown

Dataset Information

0

Potential Role of Domains Rearranged Methyltransferase7 in Starch and Chlorophyll Metabolism to Regulate Leaf Senescence in Tomato.


ABSTRACT: Deoxyribonucleic acid (DNA) methylation is an important epigenetic mark involved in diverse biological processes. Here, we report the critical function of tomato (Solanum lycopersicum) Domains Rearranged Methyltransferase7 (SlDRM7) in plant growth and development, especially in leaf interveinal chlorosis and senescence. Using a hairpin RNA-mediated RNA interference (RNAi), we generated SlDRM7-RNAi lines and observed pleiotropic developmental defects including small and interveinal chlorosis leaves. Combined analyses of whole genome bisulfite sequence (WGBS) and RNA-seq revealed that silencing of SlDRM7 caused alterations in both methylation levels and transcript levels of 289 genes, which are involved in chlorophyll synthesis, photosynthesis, and starch degradation. Furthermore, the photosynthetic capacity decreased in SlDRM7-RNAi lines, consistent with the reduced chlorophyll content and repression of genes involved in chlorophyll biosynthesis, photosystem, and photosynthesis. In contrast, starch granules were highly accumulated in chloroplasts of SlDRM7-RNAi lines and associated with lowered expression of genes in the starch degradation pathway. In addition, SlDRM7 was activated by aging- and dark-induced senescence. Collectively, these results demonstrate that SlDRM7 acts as an epi-regulator to modulate the expression of genes related to starch and chlorophyll metabolism, thereby affecting leaf chlorosis and senescence in tomatoes.

SUBMITTER: Wen YX 

PROVIDER: S-EPMC8860812 | biostudies-literature | 2022

REPOSITORIES: biostudies-literature

altmetric image

Publications

Potential Role of <i>Domains Rearranged Methyltransferase7</i> in Starch and Chlorophyll Metabolism to Regulate Leaf Senescence in Tomato.

Wen Yu Xin YX   Wang Jia Yi JY   Zhu Hui Hui HH   Han Guang Hao GH   Huang Ru Nan RN   Huang Li L   Hong Yi Guo YG   Zheng Shao Jian SJ   Yang Jian Li JL   Chen Wei Wei WW  

Frontiers in plant science 20220208


Deoxyribonucleic acid (DNA) methylation is an important epigenetic mark involved in diverse biological processes. Here, we report the critical function of tomato (<i>Solanum lycopersicum</i>) <i>Domains Rearranged Methyltransferase7</i> (<i>SlDRM7</i>) in plant growth and development, especially in leaf interveinal chlorosis and senescence. Using a hairpin RNA-mediated RNA interference (RNAi), we generated <i>SlDRM7</i>-RNAi lines and observed pleiotropic developmental defects including small an  ...[more]

Similar Datasets

| S-EPMC6896838 | biostudies-literature
| S-EPMC6022544 | biostudies-literature
| S-EPMC6506771 | biostudies-literature
| S-EPMC9250653 | biostudies-literature
| S-EPMC6508775 | biostudies-literature
| S-EPMC5964341 | biostudies-literature
| S-EPMC9298850 | biostudies-literature
| S-EPMC9530104 | biostudies-literature
| S-EPMC8658025 | biostudies-literature
| S-EPMC9300082 | biostudies-literature