Unknown

Dataset Information

0

Induction of APOBEC3-mediated genomic damage in urothelium implicates BK polyomavirus (BKPyV) as a hit-and-run driver for bladder cancer.


ABSTRACT: Limited understanding of bladder cancer aetiopathology hampers progress in reducing incidence. Mutational signatures show the anti-viral apolipoprotein B mRNA editing enzyme catalytic polypeptide (APOBEC) enzymes are responsible for the preponderance of mutations in bladder tumour genomes, but no causative viral agent has been identified. BK polyomavirus (BKPyV) is a common childhood infection that remains latent in the adult kidney, where reactivation leads to viruria. This study provides missing mechanistic evidence linking reactivated BKPyV-infection to bladder cancer risk. We used a mitotically-quiescent, functionally-differentiated model of normal human urothelium to examine BKPyV-infection. BKPyV-infection led to significantly elevated APOBEC3A and APOBEC3B protein, increased deaminase activity and greater numbers of apurinic/apyrimidinic sites in the host urothelial genome. BKPyV Large T antigen (LT-Ag) stimulated re-entry from G0 into the cell cycle through inhibition of retinoblastoma protein and activation of EZH2, E2F1 and FOXM1, with cells arresting in G2. The single-stranded DNA displacement loops formed in urothelial cells during BKPyV-infection interacted with LT-Ag to provide a substrate for APOBEC3-activity. Addition of interferon gamma (IFNγ) to infected urothelium suppressed expression of the viral genome. These results support reactivated BKPyV infections in adults as a risk factor for bladder cancer in immune-insufficient populations.

SUBMITTER: Baker SC 

PROVIDER: S-EPMC8862006 | biostudies-literature | 2022 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Induction of APOBEC3-mediated genomic damage in urothelium implicates BK polyomavirus (BKPyV) as a hit-and-run driver for bladder cancer.

Baker Simon C SC   Mason Andrew S AS   Slip Raphael G RG   Skinner Katie T KT   Macdonald Andrew A   Masood Omar O   Harris Reuben S RS   Fenton Tim R TR   Periyasamy Manikandan M   Ali Simak S   Southgate Jennifer J  

Oncogene 20220222 15


Limited understanding of bladder cancer aetiopathology hampers progress in reducing incidence. Mutational signatures show the anti-viral apolipoprotein B mRNA editing enzyme catalytic polypeptide (APOBEC) enzymes are responsible for the preponderance of mutations in bladder tumour genomes, but no causative viral agent has been identified. BK polyomavirus (BKPyV) is a common childhood infection that remains latent in the adult kidney, where reactivation leads to viruria. This study provides missi  ...[more]

Similar Datasets

| S-EPMC7488779 | biostudies-literature
| S-EPMC5056763 | biostudies-literature
2022-02-22 | GSE174244 | GEO
| S-EPMC9504301 | biostudies-literature
| S-EPMC4738784 | biostudies-literature
| S-EPMC1563921 | biostudies-literature
| S-EPMC1676288 | biostudies-literature
| S-EPMC11600483 | biostudies-literature
| S-EPMC10525381 | biostudies-literature
| S-EPMC8881803 | biostudies-literature