Unknown

Dataset Information

0

The Use of Wearable Pulse Oximeters in the Prompt Detection of Hypoxemia and During Movement: Diagnostic Accuracy Study.


ABSTRACT:

Background

Commercially available wearable (ambulatory) pulse oximeters have been recommended as a method for managing patients at risk of physiological deterioration, such as active patients with COVID-19 disease receiving care in hospital isolation rooms; however, their reliability in usual hospital settings is not known.

Objective

We report the performance of wearable pulse oximeters in a simulated clinical setting when challenged by motion and low levels of arterial blood oxygen saturation (SaO2).

Methods

The performance of 1 wrist-worn (Wavelet) and 3 finger-worn (CheckMe O2+, AP-20, and WristOx2 3150) wearable, wireless transmission-mode pulse oximeters was evaluated. For this, 7 motion tasks were performed: at rest, sit-to-stand, tapping, rubbing, drinking, turning pages, and using a tablet. Hypoxia exposure followed, in which inspired gases were adjusted to achieve decreasing SaO2 levels at 100%, 95%, 90%, 87%, 85%, 83%, and 80%. Peripheral oxygen saturation (SpO2) estimates were compared with simultaneous SaO2 samples to calculate the root-mean-square error (RMSE). The area under the receiver operating characteristic curve was used to analyze the detection of hypoxemia (ie, SaO2<90%).

Results

SpO2 estimates matching 215 SaO2 samples in both study phases, from 33 participants, were analyzed. Tapping, rubbing, turning pages, and using a tablet degraded SpO2 estimation (RMSE>4% for at least 1 device). All finger-worn pulse oximeters detected hypoxemia, with an overall sensitivity of ≥0.87 and specificity of ≥0.80, comparable to that of the Philips MX450 pulse oximeter.

Conclusions

The SpO2 accuracy of wearable finger-worn pulse oximeters was within that required by the International Organization for Standardization guidelines. Performance was degraded by motion, but all pulse oximeters could detect hypoxemia. Our findings support the use of wearable, wireless transmission-mode pulse oximeters to detect the onset of clinical deterioration in hospital settings.

Trial registration

ISRCTN Registry 61535692; http://www.isrctn.com/ISRCTN61535692.

International registered report identifier (irrid)

RR2-10.1136/bmjopen-2019-034404.

SUBMITTER: Santos M 

PROVIDER: S-EPMC8889481 | biostudies-literature | 2022 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

The Use of Wearable Pulse Oximeters in the Prompt Detection of Hypoxemia and During Movement: Diagnostic Accuracy Study.

Santos Mauro M   Vollam Sarah S   Pimentel Marco Af MA   Areia Carlos C   Young Louise L   Roman Cristian C   Ede Jody J   Piper Philippa P   King Elizabeth E   Harford Mirae M   Shah Akshay A   Gustafson Owen O   Tarassenko Lionel L   Watkinson Peter P  

Journal of medical Internet research 20220215 2


<h4>Background</h4>Commercially available wearable (ambulatory) pulse oximeters have been recommended as a method for managing patients at risk of physiological deterioration, such as active patients with COVID-19 disease receiving care in hospital isolation rooms; however, their reliability in usual hospital settings is not known.<h4>Objective</h4>We report the performance of wearable pulse oximeters in a simulated clinical setting when challenged by motion and low levels of arterial blood oxyg  ...[more]

Similar Datasets

| S-EPMC10943300 | biostudies-literature
| S-EPMC6938307 | biostudies-literature
| S-EPMC7044954 | biostudies-literature
| S-EPMC9439192 | biostudies-literature
| S-EPMC11502980 | biostudies-literature
| S-EPMC7771801 | biostudies-literature
| S-EPMC9070439 | biostudies-literature
| S-EPMC8160588 | biostudies-literature
| S-EPMC5539655 | biostudies-other
| S-EPMC9994075 | biostudies-literature