Unknown

Dataset Information

0

Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic.


ABSTRACT: Before vaccines for coronavirus disease 2019 (COVID-19) became available, a set of infection-prevention behaviors constituted the primary means to mitigate the virus spread. Our study aimed to identify important predictors of this set of behaviors. Whereas social and health psychological theories suggest a limited set of predictors, machine-learning analyses can identify correlates from a larger pool of candidate predictors. We used random forests to rank 115 candidate correlates of infection-prevention behavior in 56,072 participants across 28 countries, administered in March to May 2020. The machine-learning model predicted 52% of the variance in infection-prevention behavior in a separate test sample-exceeding the performance of psychological models of health behavior. Results indicated the two most important predictors related to individual-level injunctive norms. Illustrating how data-driven methods can complement theory, some of the most important predictors were not derived from theories of health behavior-and some theoretically derived predictors were relatively unimportant.

SUBMITTER: Van Lissa CJ 

PROVIDER: S-EPMC8904175 | biostudies-literature | 2022 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic.

Van Lissa Caspar J CJ   Stroebe Wolfgang W   vanDellen Michelle R MR   Leander N Pontus NP   Agostini Maximilian M   Draws Tim T   Grygoryshyn Andrii A   Gützgow Ben B   Kreienkamp Jannis J   Vetter Clara S CS   Abakoumkin Georgios G   Abdul Khaiyom Jamilah Hanum JH   Ahmedi Vjolica V   Akkas Handan H   Almenara Carlos A CA   Atta Mohsin M   Bagci Sabahat Cigdem SC   Basel Sima S   Kida Edona Berisha EB   Bernardo Allan B I ABI   Buttrick Nicholas R NR   Chobthamkit Phatthanakit P   Choi Hoon-Seok HS   Cristea Mioara M   Csaba Sára S   Damnjanović Kaja K   Danyliuk Ivan I   Dash Arobindu A   Di Santo Daniela D   Douglas Karen M KM   Enea Violeta V   Faller Daiane Gracieli DG   Fitzsimons Gavan J GJ   Gheorghiu Alexandra A   Gómez Ángel Á   Hamaidia Ali A   Han Qing Q   Helmy Mai M   Hudiyana Joevarian J   Jeronimus Bertus F BF   Jiang Ding-Yu DY   Jovanović Veljko V   Kamenov Željka Ž   Kende Anna A   Keng Shian-Ling SL   Thanh Kieu Tra Thi TT   Koc Yasin Y   Kovyazina Kamila K   Kozytska Inna I   Krause Joshua J   Kruglanksi Arie W AW   Kurapov Anton A   Kutlaca Maja M   Lantos Nóra Anna NA   Lemay Edward P EP   Jaya Lesmana Cokorda Bagus CB   Louis Winnifred R WR   Lueders Adrian A   Malik Najma Iqbal NI   Martinez Anton P AP   McCabe Kira O KO   Mehulić Jasmina J   Milla Mirra Noor MN   Mohammed Idris I   Molinario Erica E   Moyano Manuel M   Muhammad Hayat H   Mula Silvana S   Muluk Hamdi H   Myroniuk Solomiia S   Najafi Reza R   Nisa Claudia F CF   Nyúl Boglárka B   O'Keefe Paul A PA   Olivas Osuna Jose Javier JJ   Osin Evgeny N EN   Park Joonha J   Pica Gennaro G   Pierro Antonio A   Rees Jonas H JH   Reitsema Anne Margit AM   Resta Elena E   Rullo Marika M   Ryan Michelle K MK   Samekin Adil A   Santtila Pekka P   Sasin Edyta M EM   Schumpe Birga M BM   Selim Heyla A HA   Stanton Michael Vicente MV   Sultana Samiah S   Sutton Robbie M RM   Tseliou Eleftheria E   Utsugi Akira A   Anne van Breen Jolien J   Van Veen Kees K   Vázquez Alexandra A   Wollast Robin R   Wai-Lan Yeung Victoria V   Zand Somayeh S   Žeželj Iris Lav IL   Zheng Bang B   Zick Andreas A   Zúñiga Claudia C   Bélanger Jocelyn J JJ  

Patterns (New York, N.Y.) 20220309 4


Before vaccines for coronavirus disease 2019 (COVID-19) became available, a set of infection-prevention behaviors constituted the primary means to mitigate the virus spread. Our study aimed to identify important predictors of this set of behaviors. Whereas social and health psychological theories suggest a limited set of predictors, machine-learning analyses can identify correlates from a larger pool of candidate predictors. We used random forests to rank 115 candidate correlates of infection-pr  ...[more]

Similar Datasets

| S-EPMC9691849 | biostudies-literature
| S-EPMC10952842 | biostudies-literature
| S-EPMC6251715 | biostudies-literature
| S-EPMC10103659 | biostudies-literature
| S-EPMC10538737 | biostudies-literature
| S-EPMC8777022 | biostudies-literature
| S-EPMC7647289 | biostudies-literature
| S-EPMC8069687 | biostudies-literature
| S-EPMC10912761 | biostudies-literature
| S-EPMC9199938 | biostudies-literature