Ontology highlight
ABSTRACT:
SUBMITTER: Goldstein A
PROVIDER: S-EPMC8904253 | biostudies-literature | 2022 Mar
REPOSITORIES: biostudies-literature

Goldstein Ariel A Zada Zaid Z Buchnik Eliav E Schain Mariano M Price Amy A Aubrey Bobbi B Nastase Samuel A SA Feder Amir A Emanuel Dotan D Cohen Alon A Jansen Aren A Gazula Harshvardhan H Choe Gina G Rao Aditi A Kim Catherine C Casto Colton C Fanda Lora L Doyle Werner W Friedman Daniel D Dugan Patricia P Melloni Lucia L Reichart Roi R Devore Sasha S Flinker Adeen A Hasenfratz Liat L Levy Omer O Hassidim Avinatan A Brenner Michael M Matias Yossi Y Norman Kenneth A KA Devinsky Orrin O Hasson Uri U
Nature neuroscience 20220307 3
Departing from traditional linguistic models, advances in deep learning have resulted in a new type of predictive (autoregressive) deep language models (DLMs). Using a self-supervised next-word prediction task, these models generate appropriate linguistic responses in a given context. In the current study, nine participants listened to a 30-min podcast while their brain responses were recorded using electrocorticography (ECoG). We provide empirical evidence that the human brain and autoregressiv ...[more]