Unknown

Dataset Information

0

Efficient solid-state photoswitching of methoxyazobenzene in a metal-organic framework for thermal energy storage.


ABSTRACT: Efficient photoswitching in the solid-state remains rare, yet is highly desirable for the design of functional solid materials. In particular, for molecular solar thermal energy storage materials high conversion to the metastable isomer is crucial to achieve high energy density. Herein, we report that 4-methoxyazobenzene (MOAB) can be occluded into the pores of a metal-organic framework Zn2(BDC)2(DABCO), where BDC = 1,4-benzenedicarboxylate and DABCO = 1,4-diazabicyclo[2.2.2]octane. The occluded MOAB guest molecules show near-quantitative EZ photoisomerization under irradiation with 365 nm light. The energy stored within the metastable Z-MOAB molecules can be retrieved as heat during thermally-driven relaxation to the ground-state E-isomer. The energy density of the composite is 101 J g-1 and the half-life of the Z-isomer is 6 days when stored in the dark at ambient temperature.

SUBMITTER: Griffiths K 

PROVIDER: S-EPMC8905824 | biostudies-literature | 2022 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Efficient solid-state photoswitching of methoxyazobenzene in a metal-organic framework for thermal energy storage.

Griffiths Kieran K   Halcovitch Nathan R NR   Griffin John M JM  

Chemical science 20220223 10


Efficient photoswitching in the solid-state remains rare, yet is highly desirable for the design of functional solid materials. In particular, for molecular solar thermal energy storage materials high conversion to the metastable isomer is crucial to achieve high energy density. Herein, we report that 4-methoxyazobenzene (MOAB) can be occluded into the pores of a metal-organic framework Zn<sub>2</sub>(BDC)<sub>2</sub>(DABCO), where BDC = 1,4-benzenedicarboxylate and DABCO = 1,4-diazabicyclo[2.2.  ...[more]

Similar Datasets

| S-EPMC5449066 | biostudies-other
| S-EPMC5811159 | biostudies-literature
| S-EPMC5952545 | biostudies-literature
| S-EPMC8288962 | biostudies-literature
| S-EPMC9377385 | biostudies-literature
| S-EPMC6299715 | biostudies-literature
| S-EPMC10923900 | biostudies-literature
| S-EPMC10587105 | biostudies-literature
| S-EPMC11835277 | biostudies-literature
| S-EPMC4844687 | biostudies-literature